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1 List of Identities.

1.1 Polylogarithm Identities

For the first part of Section 2 we derive the following identities relating polylogarithms and

multiple zeta values.
For m, n, k positive integers:
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where H; = 22:1 % the ith harmonic number and empty sums are interpreted as 0.

1.2 1, Function Identities

In the Section 3 we define the function ¢, function and derive the following identities relating
the v, function and derivatives of Multiple Zeta Values.
For m, n, k positive integers,
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where empty sums are interpreted as 0.
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In this paper we provide and prove several relations between polylogarithms and multiple zeta
values. These were derived during the summer of 2019 under the supervision of Dr. Herbert
Gangl. Previously, Gangl made a number of experimental observations using PARI/GP about
potential relations between integrals of the form
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and linear combinations of zeta and multiple zeta values; these crorrespond to equations 1, 2
and 3 labelled in Section 1.1 above. This paper has been influenced by Hoffman’s work in [1].
Indeed, we will repeatedly use certain results from Hoffman’s paper and follow its style. The
goal of this paper to try an extend some of Hoffman’s results as well as to attempt to prove
some of Gangl’s conjectural identities.

3 Polylogarithm Identities.

For m, n, k positive integers,
Proposition 1.
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where for the second equality we have used Theorems 4 and 5 of [1], and for last inequality we
have used Euler’s identity. O]

Lemma 1. For positive integer n and non-negative integer m,
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where Hy, = > 0", %, 15 the mth harmonic number and empty sums are interpreted as 0.

Proof. The left hand side reads,
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using telescoping for the second inequality. The claim then follows from Lemma 1 of [1]. O]
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Lemma 2. For positive integers m and n > 2,
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where H; = 22:1 %, 1s the mth harmonic number and empty sums are interpreted as 0.

Proof. Splitting up the left hand side gives,

1
kzl;lkn 1(k:+l)(k:+l+m)(k:+l+m+1)
Y DY :
= 1 (k4 1)( k;+l+m) kZIkn—l = (k+0k+1+m+1)

The first term on the right hand side of the above equality becomes,
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using telescoping once again. Similarly, the second term of the right hand side of the initial
equality becomes,
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As a result,

1
D Tk DE+1+m)(k+1+m+1)

k,l>1
()XY M
m m—l—l k”1k+z m~|—1k>1k”*1(k—|—m—|—1)

k>1 i=1



1
B m+1 sz’”lk—i-z m—l—lzkzn Yk+m+1)

k>1 =1 k>1
R Y S NI U ) -y
= & | 2T 0T
n—3 .
C(n_l_j) n— Hm+1
- ;(_1)3—(m+1)j+2 +(=1) 2_(m+_1)” :

using the standard approach of spiting into partial fractions, telescoping and Lemma 1 of [1] [

The following proves identity 2,

Theorem 1. For positive integers m and n, with n > 2,
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where H; = 2221 % 18 the ith harmonic number and empty sums are interpreted as 0.

Proof. Beginning with the left hand side,
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where we have used Lemmas (1) and (2). O

For the case when m = 1 in the above theorem, we see that the resulting expression agrees
with that of Theorem 4 from [1].

Corollary 1. For positive integers m and n, with n > 2,
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where H; = 22:1 % 1s the ith harmonic number and empty sums are interpreted as 0.

Proof. Expanding the left hand side and using Theorem (1) gives,
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For n =2 | Corollary 1 reads,
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Another corollary of Theorem 1 is identity 4.

Corollary 2. For positive integers m and n, with n > 2 and non-negative integer k,
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Proof. Manipulating the left hand side and using the Binomial Theorem gives,
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The claim then follows from Theorem 1. O

Theorem 2. For integer n > 2 we have,
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Proof. We have,
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4 1, Function Identities.

If we consider differentiating the polylogarithm with respect to its weight we get the following,
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Using our previous results involving the Zeta Function, we can use the above to obtain some
different integral identities involving derivatives of the Zeta function and Multiple Zeta Values.
This motivates the following definition,



Definition 1. We define,
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First we want to know the radius of convergence of ,.
Lemma 3. ¢,(2) converges absolutely for |z| < 1.

Proof. Let R denote the radius of convergence of 1,,. Consider,
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Consider the following, which will be useful in the proofs that will follow:
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for an integer m.

The Stieltjes constants v, are defined by the Laurent expansion of ¢ about 1. Similarly, one
can define the generalised Stieltjes constants ;. (a) by the Laurent expansion of the Hurwitz zeta
function about 1. An answer to a Maths Stack Exchange problem by Olivier Oloa ! generalised
this by defining ‘poly-Stieltjes constants’ by the Laurent expansion of the poly-Hurwitz zeta
function about 0. Explicitly,
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for Re(a),Re(b) > —1 and k a non-negative integer. See Oloa’s answer for details. In particular,
we will be using Theorem 2 from Oloa’s answer to prove the following lemma.

Lemma 4. For positive integers p and n,
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where v refers to the Stieltjes constants, vi(a,b) refers to the poly-Stieltjes constants and where
empty sums are interpreted as 0.

Proof. For n =1 we have,
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Thttps://math.stackexchange.com/questions/364452 /evaluate-int-0-frac-pi2-frac11x21-tan-x-mathrm-dx



Assume the result holds for some n > 1. Then we have,
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Using this result and replacing the polylogarithm function with our new v,, function we can
follow a similar direction taken by Hoffman in [1] as well as develop some of the results from
the previous section.

Proposition 2. For positive integers n,
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Proof. Beginning as usual by expanding the left hand side in series gives,
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Proposition 3. For positive integers n and p, we have
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Proof. The conclusion follows by following the proof from Hoffman [1], Theorem 3, noting the
extra factor of log(k) and Lemma 4 above. O

Proposition 4. For a positive integer n,
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Proof. Once again we follow the proof in Hoffman [1] (of Theorem 4) and use Lemma 4. [

Theorem 3. For a positive integer n,
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where empty sums are interpreted as 0.
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Proof. We follow the proof of Theorem 1 outlined in Section 2 using Lemma 4 instead of

Hoffman [1], Lemma 1.

]

As you can see, we can derive similar results to everything that we derived in Section 2,

replacing Li, (zy) with 1, (zy).

Proposition 5. For integer n > 2
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Proof. Differentiating the result of Theorem 2 with respect to n gives,
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