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Abstract

Einsum Networks (EiNets) are an efficient implementation of a general class of proba-

bilistic models known as probabilistic circuits (PCs). These models have advantages

over expressive generative models such as VAEs and GANs because they allow for

exact and efficient probabilistic inference of various types. However, as PCs grow in

the number of parameters, they become more challenging to train. In particular, they

have been shown to be susceptible to ubiquitous problems in deep learning, such as

overfitting when trained via maximum likelihood estimation (MLE). Motivated by these

problems, we explore an alternative parameter learning method particularly applica-

ble to EiNets known as conditional composite log-likelihood estimation (CCLE). We

propose three methods of implementing CCLE for EiNets: uniform random sampling,

bisection sampling and grid sampling. In our experiments on MNIST and F-MNIST, we

observe that CCLE training shows promise as a valid alternative density and generative

training scheme for EiNets to MLE and for providing greater inpainting capabilities.

However, a CCLE objective shows mixed results as a form of regularisation during

training. Moreover, we note that these findings depend on the CCLE method used, the

sizes of the patches chosen for conditional training and the information density of the

images within a dataset.
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Chapter 1

Introduction

Probabilistic machine learning provides a flexible framework for rigorously reasoning

about machine learning models. Using probabilistic inference, probabilistic models can

quantify uncertainty, generate samples, and handle inference tasks like marginalisation

or conditioning.

Modern deep generative models such as variational autoencoders (VAEs) [Kingma

and Welling, 2014] have proven to be expressive models capable of modelling complex

data distributions. The expressiveness of these models often comes at a significant

price, however, that of intractable probabilistic inference. This often entails the use of

approximate methods, which come with added issues such as optimisation difficulties.

A lack of tractable probabilistic inference for such models, going against the central

motivation behind using probabilistic models in general, has led to a growing interest

in tractable probabilistic models (TPMs). TPMs are models that allow for exact and

efficient probabilistic inference of various kinds. A modern class of TPMs with a deep

learning-like structure are probabilistic circuits (PCs) [Choi et al., 2020]. PCs build

upon simpler distributions hierarchically using simple operations to create flexible and

expressive probabilistic models for discriminate tasks and density estimation [Peharz

et al., 2020c].

Despite their promise as effective TPMs, a significant drawback of the basic formu-

lation of PCs is that their computational graph is sparse, which makes their training

difficult and particularly limits their scalability to larger datasets Peharz et al. [2020a].

To address this problem, a variant of PCs known as Einsum networks (EiNets) was

introduced, a vectorised version allowing many computations to be carried out in par-

allel [Peharz et al., 2020a]. GPUs, optimised for such computations, can then exploit

this parallelisation. This allows EiNets to be trained more efficiently and allows these

1



Chapter 1. Introduction 2

models to scale to larger and more complex datasets outside the reach of traditional PCs

Peharz et al. [2020a].

EiNets, as density estimators or generative models, are often trained using (max-

imum) likelihood estimation (MLE) using expectation maximisation (EM) or using

stochastic gradient descent (SGD) Peharz et al. [2020a], Yu et al. [2022]. These training

methods often suffer from problems such as slow and difficult training and susceptibility

to overfitting [Liu and Van den Broeck, 2021]. This poses a problem as increasing

the capacity and size of a given network would lead to a more expressive model that

could better capture complex data distributions. This leads to the primary research

direction of this work: are there alternative ways of training EiNets that avoid some

of the aforementioned problems during training or provide additional benefits over

standard MLE training via EM or SGD?

An alternative method of parameter learning of probabilistic models is composite

log-likelihood estimation (CLE) [Dillon and Lebanon, 2009], a particular variant of

which is conditional composite log-likelihood estimation (CCLE). In CCLE, conditional

likelihoods of patches of variables given the remaining variables within a probabilistic

model are maximised [Asuncion et al., 2010]. Interestingly, as CCLE involves all

variables in a probabilistic model, these conditionals can be decomposed into the

difference of full and marginal likelihood terms. This structure resembles a regularised

training objective, with the marginal likelihood term resembling a penalisation or

regularisation term.

CCLE is often used for training probabilistic models where MLE training can

be infeasible due to intractable likelihoods in high-dimensional settings Dillon and

Lebanon [2009]. Moreover, CCLE also shares asymptotic properties similar to MLE

[Dillon and Lebanon, 2009], making CCLE an attractive alternative to MLE in such

scenarios.

However, a major drawback of CCLE is that it is often expensive to compute

the conditional likelihoods required as the sizes of the patches of variables increase

Asuncion et al. [2010]. However, this is not a problem for EiNets, which allow for

efficient and tractable conditioning on arbitrarily sized subsets of random variables

[Choi et al., 2020, Peharz et al., 2020a]. This leads us to the following questions and

discussion points:

• Is CCLE a viable alternative for training EiNets for density estimation and

generative tasks?
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• Could incorporating CCLE training for an EiNet model lead to enhanced inpaint-

ing performance as the model is specifically trained to maximise the likelihood

of regions conditioned on the remaining portions of images?

• Could a CCLE objective act as a form of regularisation during training?

Importantly, addressing these questions would be beneficial not only for training EiNets

if CCLE training does show improvements over standard MLE training, but would also

give useful insight and motivations for other probabilistic models more generally that

allow conditional inference and where full likelihoods may be intractable.

Our contributions in this work are as follows:

• we introduce CCLE training for EiNet models for density estimation;

• we provide three novel methods of conducting CCLE training of EiNets, namely

uniform random sampling, bisection sampling and grid sampling;

• we provide adapted metrics for evaluating CCLE-trained models;

• we provide a code base implementing the aforementioned methods and metrics;

• we demonstrate our training techniques on MNIST [LeCun et al., 1998] and

Fashion-MNIST [Xiao et al., 2017b]. We find that some of our CCLE-trained

models show promise as viable alternative training techniques for EiNets, which

further exhibit improved inpainting capabilities. However, our observations indi-

cate that a CCLE objectives show mixed success as regularisers during training.

Structure of this work. This work is divided into distinct chapters, beginning with

Chapter 2 that provides detailed information on relevant background material and related

work for this project. Specifically, we give detailed information on MLE, CLE, CCLE,

TPMs, and EiNets. We conclude the chapter by motivating the research directions for

this work.

This is followed by Chapter 3, where we outline our proposed training and evaluation

methods for CCLE training. In particular, we introduce uniform random, bisection

and grid sampling methods for CCLE training. Moreover, we introduce metrics for

evaluating and comparing our models: test set CCLL, degree of overfitting and FID

scores.

Finally, chapter 4 details our experimental setup and findings, and is concluded by

explaining the limitations of our methodology and details directions for future research.

https://github.com/tomalamb/ccle-einets


Chapter 2

Background

In this chapter, we detail the relevant background material and related work that forms

the foundation of our research. From here onward, we use bold font capitalised X =

(X1,X2, · · · ,Xk) to denote a multivariate random variable with k univariate components

denoted Xi, all of which are considered jointly distributed. We use lower case xxx to

denote a vector of values that X can take. Specifically, p(X = xxx) denotes the probability

that X takes the value xxx, that is, the joint probability mass/density function, which we

often abbreviate to p(xxx).

We adopt the convention that D = {xxx(1), . . . ,xxx(n)} denotes an arbitrary data set with

n data points, where, as above, we use bold to denote vectors. We let x(i)j denote the jth

component of the ith data point within D . Finally, we permit using sets of indices within

subscripts to select tuples of components from a particular data point. For example, for

π = {1,3}, we let xxx(i)π =
(

x(i)1 ,x(i)3

)
- note the bold font now - denote a vector consisting

of the first and third components of the data point xxx(i).

2.1 Fundamentals of Probabilistic Modelling

In probabilistic machine learning, we often view a dataset D as a sample drawn from

some underlying distribution of data p∗(X), that is D ∼ p∗(X).

2.1.1 Density Estimation

Density estimation aims to approximate the underlying data generating distribution

p∗(X). We consider a statistical model, p(X;θθθ), that is a parameterised family of

probabilistic models with parameters θθθ. The goal of density estimation is then to

4
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look for parameter settings such that p(X;θθθ) well approximates the data generating

distribution p∗(X). Specifically, we hope and often assume that our statistical model is

expressive and flexible enough such that there is some parameter setting θθθ∗ such that

p(X;θθθ∗) = p∗(X). 1 In such scenarios, we refer to θθθ∗ as an optimal parameter setting.

In real applications with complex data distributions, it is often not the case that

an optimal parameter setting exists, meaning any derived probabilistic model is an

approximation of p∗(xxx) whose quality is highly dependent on the statistical model

chosen and the complexity of the data that we are working with.

2.1.2 Maximum Likelihood Estimation, MLE

Maximum likelihood estimation (MLE) provides a point estimate, that is, a single

choice of parameters θθθMLE , that aims for the optimal parameter setting θθθ∗ such that the

resulting probabilistic model, p(X;θθθMLE) , well approximates the data distribution to

be modelled, p∗(X).

A key assumption in MLE is that the data within our dataset D = {xxx(1), . . . ,xxx(n)}
are independent and sampled from p∗(X), that is the data points are independent and

identically distributed (i.i.d). The parameter θθθMLE is chosen in order to maximise the

log-likelihood (LL) function of our statistical model for data D , which is defined as

ℓLL(θθθ;D) = log p(D;θθθ) =
n

∑
i=1

log p(xxx(i);θθθ), (2.1)

where the second equality follows from the i.i.d assumption of the data. The process of

finding θθθMLE is known as maximum likelihood estimation (MLE). It is worth knowing

that θθθMLE is a statistic, that is, a parameter estimate which is a function of the observed

data within our data set.

We often maximise the LL, that is, the logarithm of the likelihood p(θθθ;D), as the

LL is often easier to work with and optimise. Indeed, as the logarithm is a strictly

increasing function, finding the parameter setting that maximises the LL will also give

the parameter setting that maximises the likelihood p(θθθ;D).

By maximising the LL of our statistical model, we seek a parameter setting that

aims to maximise the probability that our model produces data like the data contained

in D in the hope that this will ensure that our model approximates the underlying data

distribution well.
1Essentially, we a making an assumption that p∗(X) belongs to a parametric family of distributions.
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MLE has important asymptotic properties, making it a theoretically attractive tech-

nique.

Theorem 2.1.1. Given a statistical model p(X;θθθ) with data sampled from the data

distribution p∗(X) = p(X;θθθ∗), that is D = {xxx(1), . . . ,xxx(n)} ∼ p(X;θθθ∗), then under a set

of regularity conditions on the statistical model, p(X;θθθ), we have that

√
n(θθθMLE −θθθ∗)

d→ N (000, I(θθθ∗)−1) (2.2)

as n → ∞, where N (µµµ,Σ) denotes the Σ multivariate normal distribution with mean

vector µµµ and covariance Σ and I(θθθ∗) is the Fisher information matrix and d→ denotes

convergence in distribution.

Proof. See Knight [1999] for details on the necessary regularity required of a statistical

model and the proof of the theorem.

In particular, it can be shown that a MLE converges in probability to the optimal

parameter setting θθθ∗ in the limit of infinite data, a property known as consistency

[Knight, 1999].

There are two standard methods of approaching the computation of MLE in machine

learning: stochastic gradient descent (SGD) and expectation maximisation (EM).

2.1.2.0.1 Computing MLE using SGD. In all but the most straightforward cases,

MLEs cannot be computed in closed form and necessitate approximations (often in

machine learning). One approach for finding approximate MLEs is through first-order

gradient-based optimisation algorithms such as stochastic gradient descent (SGD),

popular variants of which incorporate momentum Rumelhart et al. [1986] and adaptive

scaling of gradients (e.g. the Adam optimiser [Kingma and Ba, 2014]) which can help

in speeding up convergence.

2.1.2.0.2 Expectation Maximisation, EM. Sometimes one could be dealing with

latent variable statistical models, p(X,Z;θθθ), where some of the random variables within

the model, known as latent variables and denoted by Z, are not observed in practice

as data points (they explain some hidden structure beyond the observed data). Many

seemingly non-latent models, such as mixture models, can be, and are commonly,

written as latent variable models [Bishop and Nasrabadi, 2006].

An alternative method for MLE in latent variable models is expectation maximi-

sation (EM). This is an iterative algorithm that alternatives between computing an
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expectation (E-step) and then maximising said expectation (M-step). Specifically, given

parameters at iteration t, θθθt , the new updated parameters at iteration t + 1, θθθt+1, are

given by

θθθt+1 = argmax
θθθ

Ep(Z|θθθt)[log p(D,Z;θθθ)] (2.3)

This can be thought of as maximising the expected completed log-likelihood. One

important property of EM is that it yields a non-decreasing sequence of LLs [Dempster

et al., 1977].

2.1.2.0.3 Contrasting EM and SGD for MLE. In both of the above cases, MLE

suffers from significant issues. Indeed, models trained using MLE often suffer from

overfitting, where a model begins to memorise its training set and fails to generalise

well to new data [Ziegel, 2003]. Other common problems that MLE-trained models

suffer from include difficulty handling rare events, sensitivity to outliers and getting

stuck in local optima, which give sub-optimal solutions [Bishop and Nasrabadi, 2006,

Jurafsky and Martin, 2019].

In EM, there may not be a closed form solution for the M-step computation, or

this can be costly or even intractable to compute depending on the statistical model

used, requiring alternative appraoches [Neal and Hinton, 1998]. Moreover, the fact that

the algorithm yields a non-decreasing sequence of LLs means that EM is susceptible

to getting stuck in local optima and is particularly sensitive to its initial conditions

[Spitkovsky et al., 2013]. Moreover, EM often leads to slow training due to working

with the entire dataset for each parameter update [Barber, 2012]. These issues can be

improved through the use of stochastic EM (s-EM), which replaces the whole dataset in

the updates above with mini-batches as in SGD, which can lead to faster training and

the ability to escape local-optima [Chen et al., 2018].

SGD suffers from sensitivity to hyperparameters, such as its learning rate, which

may require tuning or decaying during training [Goodfellow et al., 2016]. Moreover,

the variance in its gradient updates can sometimes be large, leading to slow or unstable

training [De and Goldstein, 2016]. Despite this, SGD is used ubiquitously within

modern machine learning. Firstly, this is because some of the aforementioned issues

can be solved by augmenting SGD with momentum and adaptive scaling, as previously

mentioned (a testament to the flexibility of the method). Moreover, SGD is relatively

simple as a method and is easily implemented and adaptable to many architectures

with modern machine learning libraries implementing automatic differentiation such

as PyTorch [Paszke et al., 2017]. In addition, it is relatively computationally cheap
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and scalable, and the stochasticity coming from batched gradient updates, like with

s-EM, aids SGD in escaping local optima. The relative ease of implementation and

adaptability makes SGD attractive even over EM methods which often require careful

adaption to new models, architectures or problems Peharz et al. [2016].

2.1.3 Composite Likelihood Estimation, CLE

Often for high-dimensional problems, MLE can be costly or practically infeasible. For

example, consider a statistical model of the form p(X;θθθ) = p̃(X;θθθ)/Z(θθθ), where Z(θθθ)

denotes the normalising partition function and p̃(X;θθθ) its associated unnormalised

statistical model. In unnormalised statistical models such as Markov random fields

(MRF) [Bishop and Nasrabadi, 2006], the computation of the partition function can be

computationally costly or even intractable in high-dimensional spaces or in continuous

cases due to having to sum or integrate over all possible values of the variables in the

models. As a result, the LL defined in Equation (2.1) becomes infeasible to work with

[Asuncion et al., 2010].

A popular alternative parameter estimation technique when working with intractable

likelihoods is maximising a pseudolikelihood instead of the traditional likelihood func-

tion. In particular, the pseudolikelihood function is given by

pℓ(θθθ;D) =
n

∑
i=1

k

∑
j=1

log p
(

x(i)j |x(i)\ j ;θθθ

)
, (2.4)

where X is a k-dimensional jointly distributed multivariate random variable and \ j =

{1,2, ...,k}\{ j}. Here, j indexes a univariate component of X. The process of finding

the maximiser of Equation (2.4) is known as pseudolikelihood estimation (PLE). Here,

the full conditional likelihood is broken down into maximising the conditional likelihood

of each variable given the remaining variables in the model [Joe et al., 2012]. This

reduces the cost of computing the partition function to summing or integrating over a

single random variable due to the use of conditional terms [Dillon and Lebanon, 2009].

Like MLE, as discussed in Section 2.1.2, PLE is asymptotically consistent and

converges in the limit, in probability, to the parameters of the data distribution, assuming

that data distribution belongs to the same parametric family of models [Lindsay, 1988].

A downside over, say, MLE is that the asymptotic variance of MPLE is larger than for

MLE, making it challenging to work with in practice [Lindsay, 1988, Asuncion et al.,

2010].
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Subsequently, composite LLs were introduced as a generalisation of the pseudolike-

lihood and to act as a form of ablation between the two extremes of the pseudolikelihood

and the full likelihood [Asuncion et al., 2010].

Consider a finite set of pairs π = {(π1, π̃1),(π2, π̃2), · · · ,(πm, π̃m)}, where each

pair, πi and π̃i, denote disjoint sets of indices that pick out certain components of

a k-dimensional random variable X. Specifically, we have πi, π̃i ⊂ {1,2, · · · ,k} and

πi ∩ π̃i = /0. Then, a composite LL (CLL), denoted cℓ(θθθ;D), is then given as

cℓ(θθθ;D) =
n

∑
i=1

m

∑
j=1

log p
(

xxx(i)π j |xxx
(i)
π̃ j

;θθθ

)
. (2.5)

A special case of CLL is when for \πi = {1,2, · · · ,k}\π, we have that π̃i = \πi for

all i, so that each pair in π forms a partition of X. Here, the CLL is referred to as a

conditional composite log-likelihood (CCLL) [Asuncion et al., 2010]. For CCLL, we

can then simplify notation by defining π = {π1,π2, · · · ,πm} , with the π̃ j then being

implicitly defined by their corresponding π j.

A composite likelihood estimator (CLE) is then a parameter value that maximises

Equation (2.5). We refer to the specific case when working with a CCLL as a composite

conditional likelihood estimator (CCLE), which is a particular case of a CLE. In the

context of images, we can now think of π j as patches within an image with CCLE, then

maximising the likelihood of patches given the remaining portion of the images.

CLE, like PLE, notably shares similar asymptotic properties to MLE, such as

asymptotic normality and consistency, which makes it a theoretically valid and attractive

alternative to MLE for parameter estimation in scenarios with intractable likelihoods.

Theorem 2.1.2. Given a statistical model p(X;θθθ) with data sampled from the data dis-

tribution p(X;θθθ∗), that is D = {xxx(1), . . . ,xxx(n)}∼ p(X;θθθ∗), then under a set of regularity

conditions on the statistical model p(X;θθθ), we have that

√
n(θθθCLE −θθθ∗)

d→ N (000,G−1(θθθ∗)), (2.6)

as n → ∞, where θθθCLE denotes the CLE introduced in Section 2.1.3 and G(θθθ∗) denotes

the Godambe information matrix.

Proof. See Varin et al. [2011] for details on the necessary regularity required of a

statistical model and the proof of the theorem.

Moreover, the asymptotic variance of CLE lies between the two extremes of PLE

and MLE, and it is believed, although not rigorously proven as far as we can tell,
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that increasing the sizes of π j can reduce the variance of estimators and increase their

accuracy [Asuncion et al., 2010].

CLE can be computed similarly to MLE through the use of SGD. However, it is

worth noting that computing CLEs via SGD is often costly as the size of π increases,

increasing the number of terms in Equation (2.5). Moreover, although one may be able

to obtain more accurate estimates using larger patches, π j, this often comes at the price

of increased computational cost for many models since we would have to sum over or

integrate over increasingly many variables [Asuncion et al., 2010].

2.1.4 Probabilistic Query Classes and Tractability

The main draw of using probabilistic models is that they allow us to more precisely

reason and make decisions in the face of uncertainty and randomness, natural in real-

world scenarios. Such decisions often involve performing some form of probabilistic

inference.

There are many possible types of probabilistic inference that we may want to

perform on a given probabilistic model. Indeed, we may want to: calculate a marginal

distribution when some data is missing; calculate probabilities conditioned on/in light

of known information; calculate the maximum a posteriori (MAP) estimates, that is, the

value of a set of variable that makes an event most likely under the model conditioned

on some separate known event; compute moments of a distribution, for example, to

compute its expectation or variance; or calculate more complex quantities such as the

Kullback-Leibler (KL) divergence between two distributions to quantify the similarity

or difference between the two distribution. Choi et al. [2020] divide and classify some

of the aforementioned inference types by introducing and concretely defining different

important query classes of probabilistic inference.

Consider a k-dimensional multivariate probabilistic model p(X). Firstly, Choi et al.

[2020] consider the class of complete evidence queries, denoted by EVI, which refer to

the computation of the probability of a complete event using the full joint distribution

of a probabilistic model, i.e. the computation of p(X = xxx) for any xxx.

Another important class introduced by Choi et al. [2020] is that of marginal queries,

referred to as MAR. The MAR query class consists of all possible marginal evaluations

resulting from the summing/integrating out of variables from full joint distributions.

A related query class to MAR is the conditional query class, referred to as CON,

which is the set of all conditional events that we may want to calculate from our
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probabilistic model, e.g. the probability of some event given another known or assumed

to have occurred event. Note that really CON queries can be considered part of the

MAR class, as using the basic definition of conditional probability, we can write a

conditional query as the ratio of two MAR queries.

The maximum a posteriori (MAP) query class is the final inference class important

for our work. This class consists of inference queries that find the values of a set of

random variables that maximise the probability of this set of variable values given

known values of the remaining variables in a probabilistic model [Choi et al., 2020].

MAP queries are particularly useful for inpainting tasks, where we can fill in missing

pixels in images conditioned on the pixel values of the image that we do know.

Having introduced various inference query classes, we come onto the vital notion

of tractability. An inference query being tractable for a model generally refers to

being able to exactly and efficiently compute the query. This is pivotal for practical

applications of probabilistic models, such as in finance, where decisions must be made

in real-time and with great precision. Choi et al. [2020] formally define the notion of

tractability as follows:

Definition 2.1.1 (Tractable Inference for a Class of Inference Queries). We say that

a statistical model, p(X;θθθ), is tractable for a class of inference queries Q if and

only if any query within Q can be computed exactly, requiring no approximations, in

polynomial time in the size of the statistical model, denoted |p(X;θθθ)|, that is computed

in time O(poly(|p(X;θθθ)|)).

Here, the size, |p(X;θθθ)|, of the statistical model p(X;θθθ) can refer to different

things in different contexts, but in essence is meant to tie in with the overall number of

computations required for a given statistical model to compute an inference query. In

graphical models, this can refer to the size of their factors.

With a precise definition of tractable inference, we can now detail the challenges

many popular and successful deep machine learning models face, that of intractable

probabilistic inference.

2.2 Tractable Probabilistic Models, TPMs

Deep generative models such as variational autoencoders (VAEs) [Kingma and Welling,

2014], diffusion models [Yang et al., 2022] and generative adversarial networks (GANs)

Goodfellow et al. [2014] have shown great success in modern machine learning tasks,
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with these models, for example, being capable of modelling complex data distributions

and generating high-quality image samples. A lot of the success of these models can

be attributed to their incorporation of modern deep learning methods (for example, the

use of neural networks as encoder and decoder networks that parameterise the posterior

distributions of latent and observed variables within VAEs), which allow these models

to scale up to millions if not billions of parameters.

The sheer size and complexity of these models often means that certain types of

probabilistic inference remain intractable. Approximate methods such as Monte Carlo

sampling (e.g. Markov chain Monte Carlo (MCMC)[Bardenet et al., 2017]) or vari-

ational approximations [Kingma and Welling, 2014] are then required to carry out

approximate probabilistic inference. These approximate methods come with issues

and difficulties. Indeed variational methods are known to be challenging to optimise

effectively and can produce biased approximate solutions [Zhang et al., 2018], whilst

MCMC suffers from slow convergence, being computationally intensive, can be dif-

ficult to optimise and often has difficulties extending to complex higher dimensional

distributions [Gilks and Roberts, 1996].

Despite the flexibility and expressiveness of models such as VAEs and GANs, their

dependence on approximation methods due to intractable inference is a significant blow.

In particular, it goes against the fundamental draw of probabilistic models to allow

for exact, accurate and rigorous reasoning for decision-making in uncertain scenarios.

This, alongside the difficulties in approximate inference, has led to a growing interest in

the literature towards tractable probabilistic models (TPMs) that allow for exact and

efficient probabilistic inference, such as marginalisation or conditioning. Simple TPMs

such as hidden Markov models (HMMs) Gales et al. [2008] and Kalman filters [Kalman,

1960], which were popular in the past, have fallen out of favour due to the rise, success

and scalability of modern deep learning models.

This leads to the idea of a deep probabilistic model that can be both expressive and

yet remain tractable for probabilistic inference. A popular class of such models include

probabilistic circuits (PCs), which include a particular scalable collection of models

known as einsum networks (EiNets).

2.3 Probabilistic Circuits, PCs

PCs are a general group of probabilistic models which includes previously well-studied

models such as arithmetic circuits [Lowd and Domingos, 2012] and sum-product
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networks [Gens and Pedro, 2013]. Under certain conditions, PCs allow efficient and

tractable probabilistic inference for various inference query types.

Concretely, a PC is a probabilistic model over a multivariate random variable X
specified by a (DAG) structure containing three types of nodes: input leaf distribution

nodes, sum nodes and product nodes. Input leaf distribution nodes, as the name implies,

are distributions at the leaves of the DAG of a PC that act as the initial input distributions

of the probabilistic model. Each leaf distribution is defined over some subset of the

components of X and can come from a wide variety of probability distributions, such

as the exponential family of distributions containing categorical, normal and gamma

distributions as members [Bishop and Nasrabadi, 2006].

The second type of node in a PC is the product node. This node multiplies the

distributions defined by the outputs of its input nodes. This node takes inspiration

from fully factorised distributions which contain independent variables, e.g. X ⊥⊥ YYY iff

p(X,YYY ) = p(X)p(YYY ) , where ⊥⊥ denotes the independence of random variables.

The final type of node in a PC is a sum node. This computes a convex sum of

the outputs of its input nodes (by convex sum, we refer to a linear combination of the

distributions defined by its children with the weights used for the linear combination

summing to one - effectively a weighted average). This node effectively functions as a

mixture model.

Using these three types of nodes, a PC can be built up hierarchically using a DAG

and a mixture of the aforementioned nodes, as shown in Figure 2.1, defining increasingly

more complex distributions. A PC is really a statistical model with parameters given by

the parameters of the input distributions and the mixture weights specified within sum

layers.

Sum-product networks [Peharz et al., 2020c] are a previously well-studied class

of probabilistic models that have shown success in both discriminative and generative

tasks whilst also, most importantly, allowing tractable inference for certain classes of

inference queries. Although sum-product networks precede the introduction of PCs by

[Choi et al., 2020], they constitute a particular class of PC satisfying specific structural

properties.

Sum-product networks are defined as a PC which is smooth 2 and decomposable,

which refer the same concepts introduced in Section 2.3.1. Figure 2.1 gives a concrete

example of a sum-product network for clarity. These two properties allow for tractable

2It is worth noting that completeness is another name commonly used in the literature to refer to the
property of smoothness [Peharz et al., 2020c, 2015].
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Figure 2.1: Sum product network example - an example of a DAG defining a smooth

and decomposable PC, a sum-product networks, used for density estimation over three

random variables X = {X1,X2,X3} with leaf nodes Li, product nodes Pi and sum nodes

Si. In this PC, we have, for example, the following scopes: φ(P1) = φ(P2) = φ(S1) =

{X1,X2}, and φ(L5) = X3.

inference for MAR queries, specifically in linear time in the size of the PC given tractable

leaf distributions [Choi et al., 2020]. Moreover, smoothness and decomposability

precisely characterise the set of PCs that allow for MAR queries (see proposition 17

and theorem 19 in [Choi et al., 2020] for details). 3 A simple corollary of this fact is

that CON queries can also be computed in linear time in the size of the sum-product

network as they can be decomposed into the ratios of MAR queries (corollary 18 in

[Choi et al., 2020]).

In density estimation tasks, a rooted DAG is used with a single root node with no

parents, often assumed to be a sum node, representing the joint distribution over X
(the scope of the root node is X). PCs for density estimation tasks can then be trained

using MLE. This can be done using SGD to optimise the trainable weights of a PC.

However, it is also common to use EM to perform MLE. Indeed, as highlighted by

Poon and Domingos [2011], the sum nodes within PCs are essentially mixture models,

where it is common to think of the mixture weights as being associated with a collection

of latent variables. Indeed, Peharz et al. [2016] carefully defined the latent variable

model associated with smooth and decomposable PCs and derived the EM algorithm

to perform MLE for such networks. Another benefit of reformulating PCs as latent

variable models is that it allows for sampling via ancestral sampling [Peharz et al.,

2020a], allowing PCs also to be generative.

3Structural properties required for tractable inference other queries can be found in [Choi et al., 2020].
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2.3.1 Probabilistic Circuits and Einsum Networks

Despite their success in density estimation and discriminative tasks whilst allowing for

tractable probabilistic inference [Peharz et al., 2020c], PCs struggle to scale to larger

models and to more complicated datasets due to their sparse computational graphs

[Peharz et al., 2020a]. As a remedy for the sparsity problem, Peharz et al. [2020a]

proposed a vectorised variant of PCs named Einsum networks (EiNets) which have a

more dense and efficient computational structure that helps these models scale to datasets

out of reach of traditional implementations of PCs. Vectorised implementations of PCs

have been introduced prior to EiNets. [Trapp et al., 2019, Dennis and Ventura, 2012,

Peharz et al., 2013, 2020c]. However, EiNets, by introducing the einsum operation,

allow for more efficient vectorised models with faster training times and more efficient

memory usage [Peharz et al., 2020a].

We consider an EiNet to be a probabilistic model over a random variable X that

is defined by a DAG consisting of three types of nodes: leaf, sum and product nodes,

which we denote by L, S and P respectively. The inputs and outputs of each node within

an EiNet’s DAG encode multiple probability distributions as vectors rather than as

single distributions as in traditional PCs. We, therefore, refer to the outputs of leaf, sum,

and product nodes by LLL, SSS and PPP.

Peharz et al. [2020a] impose three assumptions on EiNets: that each node in the

DAG of an EiNet contains the same number of distributions and denote this quantity by

K; that in the DAG of an EiNet, we have an alternating structure of product and sum

nodes 4; and that for density estimation, an EiNet has a single output that is a sum node
5.

An EiNet’s leaf nodes’ outputs consist of vectors of distributions defined over a

subset of X, which act as the input distributions of the EiNet. Leaf node distributions are

often assumed to come from the flexible and broad family of exponential distributions

whose members include the gamma, categorical and normal distributions [Peharz et al.,

2020a].

A product node in an EiNet takes vectors of input distributions and computes the

outer product of these vectors, that is, the product of each combination of distributions

with a single distribution selected from the outputs of each input node. Specifically,

for a product node P, we have that PPP =
⊗

C∈in(P)CCC. In particular, denoting in(P) =

4Technically this condition is broken through the introduction of mixture layers.
5These assumptions are not strictly necessary but, say, the assumption on K begin constant for each

node simplifies the description of EiNets.
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{C1,C2, · · · ,C|in(P)|} as the input nodes to P, the components of tensor PPP are given

by Pi1,··· ,iin(P) = (C1)i1 · (C2)i2 · · ·(C|in(P)|)i|in(P)| , for i j ∈ {1, · · ·K}. As a result, product

nodes can be considered to represent fully factored distributions of independent random

variables. Note that the number of components in the output of a product node is given

by K|in(P)|, which grows exponentially in the number of input nodes of PPP. Hence, Peharz

et al. [2020a] limit the number of input nodes for each product node to two to limit the

computational cost of product nodes within EiNets. Under this assumption, we see that

the output of each product node is a K ×K matrix of probability distributions.

A sum node, S, assuming alternating sum and product nodes, takes the K×K matrix

output of its input product node P and computes convex sums of the elements of PPP.

Specifically, this can be written as SSS =Wvec(PPP), where vec(PPP) unrolls the K ×K input

to SSS (coming from PPP) into a K2-dimensional vector which is then multiplied by a K×K2

weight matrix W , giving a K-dimensional output. Note that in order to compute convex

sums of the elements of PPP using W , we have that ∑ j Wi, j = 1 for all i, i.e. the rows of

W must sum to one.

Peharz et al. [2020a] then combine the computations performed by the sum and

product nodes into a single operation they term the einsum operation, which we denote

EEE. This takes two vectors CCC and CCC′ as inputs (i.e. really the outputs of in(P) of a product

node P as above) and computes an output whose components are given via the following

inner products: Ei = C jWi jkC′
k, where i, j,k ∈ {1, . . .K} and where we have implicit

sums over repeated indices following the Einstein summation convention [Arfken and

Weber, 1972]. Einsum operations can then be computed in parallel within an einsum

layer which is computed as Eli =Cl jWli jkC′
lk, for i, j,k ∈ {1, . . .K} and l ∈ {1, . . .L},

where L denotes the number of einsum operations in the einsum layer.

The final layer introduced by the authors is a mixing layer. As we have seen in the

einsum layer, each einsum operation is effectively represented as a product of the outputs

of two input nodes, whose output is then fed into a single sum node. This, therefore,

assumes that each sum node only has a single input node. For EiNets to be flexible to

working with sum nodes with multiple input nodes whilst maintaining computational

efficiency, the authors introduce what they term a mixing layer. Here, consider the

output of a sum node SSS with several product nodes as inputs in(S) = {P1, . . . ,P|in(S)|}.

Then for each input node Pi, we introduce a sum node Si for which Pi is the single

input (creating an einsum layer). To create a single output sum node, S̃, a weighted

combination of SSSi is taken as S̃SS = ∑
in(S)
i=1 wiSSSi, for some trainable weights wi. This is

effectively a mixture of the outputs of the introduced sum nodes. Figure 2.2 gives a



Chapter 2. Background 17

visual description of the process of introducing a mixing layer.
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Figure 2.2: Einsum operation and mixing layer - figure showing an einsum operation

and mixing layer within the DAG of an EiNet. In particular, the red box highlights the

addition of a mixing layer, transforming a sum node with multiple product node children

to multiple sum nodes with single products as children which are subsequently mixed by

a mixing layer sum node. Added nodes are highlighted in red.

Figure 2.2 in the appendix gives a visual description of the process of introducing a

mixing layer.

EiNets are then built up using einsum and mixing layers in a hierarchical fashion,

layer by layer, creating increasingly more expressive distributions. Examples of DAGs

for simple EiNets can be found in Figure 2.3 and in Figure 2.1 in the appendix. Finally,

we note that EiNets are statistical models with learnable parameters coming from the

parameters of the input leaf distributions and the mixture weights in the sum nodes and

mixing layers.

An essential property of EiNets is that like PCs and under the same structural

constraints on their DAGs allow for exact and efficient probabilistic inference of various

inference queries assuming tractable leaf distributions. To discuss specific properties

relevant to this work, we first introduce the concept of the scope of a node within an

EiNet’s DAG.

Definition 2.3.1 (Scope). Let M be a EiNet defined over a k-dimensional random

variable X with an associated DAG, G . The scope of N ∈V (G), denoted φ(N), is then

defined as

φ(N) =
⋃

P∈in(N)

φ(P), (2.7)

where V (G) denotes the vertices of G and in(N) the input nodes of N. If N is an input
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leaf node, φ(N) is defined as the set of random variables, a subset of X, that the leaf

node’s distribution is defined over.

Using the definition of the scope of a node, two important structural proprieties

for the efficient computation of MAR and thus CON queries are smoothness and

decomposability [Choi et al., 2020]. An EiNet is smooth if the inputs of each sum

node share identical scope - this effectively means that each distribution in a sum node

represents a valid mixture of distributions. Decomposability refers to the inputs of each

product node having disjoint scopes - effectively defining factorised distributions.

An EiNet that is smooth and decomposable allows for the efficient computation

of MAR and CON queries [Peharz et al., 2020a, Choi et al., 2020]. Traditional PCs

that are smooth and decomposable are known as sum-product networks (SPNs) [Peharz

et al., 2020c]. SPNs can compute MAR and CON queries in linear time in the number

of edges in an SPNs DAG. This isn’t quite true in EiNets due to having to carry out

vectorised computations, so here, one must also account for K.

Nevertheless, exact MAR and CON queries can be computed efficiently, which is

impressive given the size that EiNet models can grow to. Indeed all of the introduced

operations within an EiNet, specifically the einsum layer, can be computed in parallel,

allowing EiNet training and computations to take advantage of GPUs, making training

quick and efficient. Indeed Peharz et al. [2020a] showed that training speeds and storage

requirements for EiNets can be up to one or even two orders of magnitude better than

previous PC implementations such as LibSPN [Pronobis et al., 2017].

Finally, Peharz et al. [2020a] show that EiNets can be trained and show good

performance on larger and more complex datasets than are usually discussed in the prior

PC literature such MNIST [LeCun et al., 1998], CelebA [Liu et al., 2018] and SVHN

[Netzer et al., 2011]. The authors show that EiNets scale well to these complex high-

dimensional image datasets while maintaining exact, efficient and tractable probabilistic

inference even for large models with millions of parameters.

2.3.2 PC and EiNet Structure

For PCs and EiNets, there is great freedom in formulating their DAG structure beyond

satisfying the basic requirements for tractable inference for certain query classes. Indeed

this freedom has led to research into methods of best learning or formulating the DAG

structures for PCs. These include random binary trees which recursively divide the

scopes of nodes randomly into equal halves [Peharz et al., 2020c] and clustering



Chapter 2. Background 19

<latexit sha1_base64="2wHX4EmMGxdFPziDSeO2ekOMRws=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfOQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCij/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwsezfl6/pVqVrJ4sjDCZzCOXhwC1W4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3HDjK8=</latexit>

+
<latexit sha1_base64="2wHX4EmMGxdFPziDSeO2ekOMRws=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfOQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCij/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwsezfl6/pVqVrJ4sjDCZzCOXhwC1W4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3HDjK8=</latexit>

+
<latexit sha1_base64="2wHX4EmMGxdFPziDSeO2ekOMRws=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfOQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCij/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwsezfl6/pVqVrJ4sjDCZzCOXhwC1W4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3HDjK8=</latexit>

+

<latexit sha1_base64="007xIywhp5Mj5nw1xpMTklFMCao=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGMA9IljA7mU3GzO4sM71CWPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZVSqGW8yJZXuBNRwKWLeRIGSdxLNaRRI3g7GtzO//cS1ESp+wEnC/YgOYxEKRtFKrR6KiJt+ueJW3TnIKvFyUoEcjX75qzdQLI14jExSY7qem6CfUY2CST4t9VLDE8rGdMi7lsbULvGz+bVTcmaVAQmVthUjmau/JzIaGTOJAtsZURyZZW8m/ud1UwxrfibiJEUes8WiMJUEFZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSuqh619Wr+8tKvZbHUYQTOIVz8OAG6nAHDWgCg0d4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/tmmPNA==</latexit>⇥ <latexit sha1_base64="007xIywhp5Mj5nw1xpMTklFMCao=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGMA9IljA7mU3GzO4sM71CWPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZVSqGW8yJZXuBNRwKWLeRIGSdxLNaRRI3g7GtzO//cS1ESp+wEnC/YgOYxEKRtFKrR6KiJt+ueJW3TnIKvFyUoEcjX75qzdQLI14jExSY7qem6CfUY2CST4t9VLDE8rGdMi7lsbULvGz+bVTcmaVAQmVthUjmau/JzIaGTOJAtsZURyZZW8m/ud1UwxrfibiJEUes8WiMJUEFZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSuqh619Wr+8tKvZbHUYQTOIVz8OAG6nAHDWgCg0d4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/tmmPNA==</latexit>⇥
<latexit sha1_base64="007xIywhp5Mj5nw1xpMTklFMCao=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGMA9IljA7mU3GzO4sM71CWPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZVSqGW8yJZXuBNRwKWLeRIGSdxLNaRRI3g7GtzO//cS1ESp+wEnC/YgOYxEKRtFKrR6KiJt+ueJW3TnIKvFyUoEcjX75qzdQLI14jExSY7qem6CfUY2CST4t9VLDE8rGdMi7lsbULvGz+bVTcmaVAQmVthUjmau/JzIaGTOJAtsZURyZZW8m/ud1UwxrfibiJEUes8WiMJUEFZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSuqh619Wr+8tKvZbHUYQTOIVz8OAG6nAHDWgCg0d4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/tmmPNA==</latexit>⇥ <latexit sha1_base64="007xIywhp5Mj5nw1xpMTklFMCao=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGMA9IljA7mU3GzO4sM71CWPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZVSqGW8yJZXuBNRwKWLeRIGSdxLNaRRI3g7GtzO//cS1ESp+wEnC/YgOYxEKRtFKrR6KiJt+ueJW3TnIKvFyUoEcjX75qzdQLI14jExSY7qem6CfUY2CST4t9VLDE8rGdMi7lsbULvGz+bVTcmaVAQmVthUjmau/JzIaGTOJAtsZURyZZW8m/ud1UwxrfibiJEUes8WiMJUEFZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSuqh619Wr+8tKvZbHUYQTOIVz8OAG6nAHDWgCg0d4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/tmmPNA==</latexit>⇥
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<latexit sha1_base64="fGhQ0TJ6cG3IimSv8pVcI99IPpQ=">AAAB/3icbVC7SgNBFL0bNcb4ilraDAbBKuwGfJQBG8sEzAOSJcxOZpMhM7PLzKwQlhR+ghY22qcTW3/BPxA7v8TJo9DEAxcO59zLuZwg5kwb1/10MmvrG9nN3FZ+e2d3b79wcNjQUaIIrZOIR6oVYE05k7RumOG0FSuKRcBpMxheT/3mHVWaRfLWjGLqC9yXLGQEGyu1OoFIW93yuFsouiV3BrRKvAUpVrK1r4+nh0m1W/ju9CKSCCoN4VjrtufGxk+xMoxwOs53Ek1jTIa4T9uWSiyo9tPZv2N0apUeCiNlRxo0U39fpFhoPRKB3RTYDPSyNxX/9QKxlGzCKz9lMk4MlWQeHCYcmQhNy0A9pigxfGQJJorZ3xEZYIWJsZXlbSnecgWrpFEueRel85ptpwxz5OAYTuAMPLiECtxAFepAgMMjPMOLc+9MnFfnbb6acRY3R/AHzvsP6GOafA==</latexit>

X2

<latexit sha1_base64="EM+aFP6pCpJXJc/4+OipGuE8BtE=">AAAB/3icbVC7SgNBFL0bNcb4ilraDAbBKuwGfJQBG8sEzAOSJcxOZpMhM7PLzKwQlhR+ghY22qcTW3/BPxA7v8TJo9DEAxcO59zLuZwg5kwb1/10MmvrG9nN3FZ+e2d3b79wcNjQUaIIrZOIR6oVYE05k7RumOG0FSuKRcBpMxheT/3mHVWaRfLWjGLqC9yXLGQEGyu1OoFIW11v3C0U3ZI7A1ol3oIUK9na18fTw6TaLXx3ehFJBJWGcKx123Nj46dYGUY4Hec7iaYxJkPcp21LJRZU++ns3zE6tUoPhZGyIw2aqb8vUiy0HonAbgpsBnrZm4r/eoFYSjbhlZ8yGSeGSjIPDhOOTISmZaAeU5QYPrIEE8Xs74gMsMLE2MrythRvuYJV0iiXvIvSec22U4Y5cnAMJ3AGHlxCBW6gCnUgwOERnuHFuXcmzqvzNl/NOIubI/gD5/0H5s6aew==</latexit>

X1

<latexit sha1_base64="007xIywhp5Mj5nw1xpMTklFMCao=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGMA9IljA7mU3GzO4sM71CWPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZVSqGW8yJZXuBNRwKWLeRIGSdxLNaRRI3g7GtzO//cS1ESp+wEnC/YgOYxEKRtFKrR6KiJt+ueJW3TnIKvFyUoEcjX75qzdQLI14jExSY7qem6CfUY2CST4t9VLDE8rGdMi7lsbULvGz+bVTcmaVAQmVthUjmau/JzIaGTOJAtsZURyZZW8m/ud1UwxrfibiJEUes8WiMJUEFZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSuqh619Wr+8tKvZbHUYQTOIVz8OAG6nAHDWgCg0d4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/tmmPNA==</latexit>⇥ <latexit sha1_base64="007xIywhp5Mj5nw1xpMTklFMCao=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGMA9IljA7mU3GzO4sM71CWPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZVSqGW8yJZXuBNRwKWLeRIGSdxLNaRRI3g7GtzO//cS1ESp+wEnC/YgOYxEKRtFKrR6KiJt+ueJW3TnIKvFyUoEcjX75qzdQLI14jExSY7qem6CfUY2CST4t9VLDE8rGdMi7lsbULvGz+bVTcmaVAQmVthUjmau/JzIaGTOJAtsZURyZZW8m/ud1UwxrfibiJEUes8WiMJUEFZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSuqh619Wr+8tKvZbHUYQTOIVz8OAG6nAHDWgCg0d4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/tmmPNA==</latexit>⇥

<latexit sha1_base64="2wHX4EmMGxdFPziDSeO2ekOMRws=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfOQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCij/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwsezfl6/pVqVrJ4sjDCZzCOXhwC1W4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3HDjK8=</latexit>

+
<latexit sha1_base64="2wHX4EmMGxdFPziDSeO2ekOMRws=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfOQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCij/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwsezfl6/pVqVrJ4sjDCZzCOXhwC1W4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3HDjK8=</latexit>

+

<latexit sha1_base64="dedNIBWS1qDzh4w4BP4xSSA7oEg=">AAACL3icbZDLSgMxFIYzXmu91bp0ExShgpSZqlVwU3DjsoKthU4pmTRtQ5OZITkjlGGewRfwJXyFbnUvbkTc+QDuTS8Ubf0h8PGfczgnvxcKrsG236yFxaXlldXUWnp9Y3NrO7OTreogUpRVaCACVfOIZoL7rAIcBKuFihHpCXbn9a6G9bt7pjQP/Fvoh6whScfnbU4JGKuZKYY515Nxrekkx3hMhSmdTOk0uRyRC10GJDlqZg7svD0SngdnAgelrJv7Hjy45Wbm020FNJLMByqI1nXHDqEREwWcCpak3UizkNAe6bC6QZ9Iphvx6H8JPjROC7cDZZ4PeOT+noiJ1LovPdMpCXT1bG1o/lvz5MxmaF80Yu6HETCfjhe3I4EhwMPwcIsrRkH0DRCquLkd0y5RhIKJOG1CcWYjmIdqIe8U82c3Jp0CGiuF9tA+yiEHnaMSukZlVEEUPaIBekYv1pP1ar1bH+PWBWsys4v+yPr6Afriq6I=</latexit>

p(X1, X2, X3, X4;✓)

<latexit sha1_base64="2wHX4EmMGxdFPziDSeO2ekOMRws=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfOQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCij/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwsezfl6/pVqVrJ4sjDCZzCOXhwC1W4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3HDjK8=</latexit>

+
<latexit sha1_base64="CbKnX8Tmz2rPnbtMDLKeaSEOhwc=">AAAB+3icbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGNA9IljA7mU2GzMwuM71CCPkFr3r3Jl79GK9+ibvJHjSxoKGo6qaaCmIpLLrul1NYW9/Y3Cpul3Z29/YPyodHLRslhvEmi2RkOgG1XArNmyhQ8k5sOFWB5O1gfJv57SdurIj0I05i7is61CIUjGImPfS9Ur9ccavuHGSVeDmpQI5Gv/zdG0QsUVwjk9TarufG6E+pQcEkn5V6ieUxZWM65N2Uaqq49afzX2fkLFUGJIxMOhrJXP19MaXK2okK0k1FcWSXvUz81wvUUjKGN/5U6DhBrtkiOEwkwYhkRZCBMJyhnKSEMiPS3wkbUUMZpnVlpXjLFayS1kXVu6pe3tcq9VpeTxFO4BTOwYNrqMMdNKAJDEbwDC/w6sycN+fd+VisFpz85hj+wPn8AUb3lDE=</latexit>

S1

<latexit sha1_base64="2qHAsdYaa3hh7+CPqvb6Mko0l7Q=">AAAB+3icbVDLSgNBEOz1GeMr6tHLYBA8hd0QH8eAF48RzQOSJcxOepMhM7PLzKwQQn7Bq969iVc/xqtf4m6yB00saCiquqmmglhwY133y1lb39jc2i7sFHf39g8OS0fHLRMlmmGTRSLSnYAaFFxh03IrsBNrpDIQ2A7Gt5nffkJteKQe7SRGX9Kh4iFn1GbSQ79a7JfKbsWdg6wSLydlyNHol757g4glEpVlghrT9dzY+lOqLWcCZ8VeYjCmbEyH2E2pohKNP53/OiPnqTIgYaTTUZbM1d8XUyqNmcgg3ZTUjsyyl4n/eoFcSrbhjT/lKk4sKrYIDhNBbESyIsiAa2RWTFJCmebp74SNqKbMpnVlpXjLFaySVrXiXVUu72vlei2vpwCncAYX4ME11OEOGtAEBiN4hhd4dWbOm/PufCxW15z85gT+wPn8AUiMlDI=</latexit>

S2
<latexit sha1_base64="qBzROJATdAMGIWakW7Jx9vPkMPw=">AAAB+3icbVDLSgNBEOyNrxhfUY9eBoPgKexqfBwDXjxGNA9IljA7mU2GzMwuM71CCPkFr3r3Jl79GK9+ibvJHjRa0FBUdVNNBbEUFl330ymsrK6tbxQ3S1vbO7t75f2Dlo0Sw3iTRTIynYBaLoXmTRQoeSc2nKpA8nYwvsn89iM3VkT6AScx9xUdahEKRjGT7vvnpX654lbdOchf4uWkAjka/fJXbxCxRHGNTFJru54boz+lBgWTfFbqJZbHlI3pkHdTqqni1p/Of52Rk1QZkDAy6Wgkc/XnxZQqaycqSDcVxZFd9jLxXy9QS8kYXvtToeMEuWaL4DCRBCOSFUEGwnCGcpISyoxIfydsRA1lmNaVleItV/CXtM6q3mX14q5WqdfyeopwBMdwCh5cQR1uoQFNYDCCJ3iGF2fmvDpvzvtiteDkN4fwC87HN0ohlDM=</latexit>

S3

<latexit sha1_base64="EPgIezP1YFPg8RdwxzaCWEDtmEc=">AAAB+3icbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXjxGNA9IljA76U2GzMwuM7NCCPkFr3r3Jl79GK9+ibvJHjSxoKGo6qaaCmLBjXXdL6ewtr6xuVXcLu3s7u0flA+PWiZKNMMmi0SkOwE1KLjCpuVWYCfWSGUgsB2MbzO//YTa8Eg92kmMvqRDxUPOqM2kh36t1C9X3Ko7B1klXk4qkKPRL3/3BhFLJCrLBDWm67mx9adUW84Ezkq9xGBM2ZgOsZtSRSUafzr/dUbOUmVAwkinoyyZq78vplQaM5FBuimpHZllLxP/9QK5lGzDG3/KVZxYVGwRHCaC2IhkRZAB18ismKSEMs3T3wkbUU2ZTevKSvGWK1glrYuqd1W9vK9V6rW8niKcwCmcgwfXUIc7aEATGIzgGV7g1Zk5b86787FYLTj5zTH8gfP5A0u2lDQ=</latexit>

S4
<latexit sha1_base64="wTh8A2aeEu1X7NJ0CBiEfIumG+c=">AAAB+3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKUY8BLx4jmgckS5idzCZDZmaXmV4hhPyCV717E69+jFe/xN1kD5pY0FBUdVNNBbEUFl33yymsrW9sbhW3Szu7e/sH5cOjlo0Sw3iTRTIynYBaLoXmTRQoeSc2nKpA8nYwvs389hM3VkT6EScx9xUdahEKRjGTHvq1Ur9ccavuHGSVeDmpQI5Gv/zdG0QsUVwjk9TarufG6E+pQcEkn5V6ieUxZWM65N2Uaqq49afzX2fkLFUGJIxMOhrJXP19MaXK2okK0k1FcWSXvUz81wvUUjKGN/5U6DhBrtkiOEwkwYhkRZCBMJyhnKSEMiPS3wkbUUMZpnVlpXjLFayS1kXVu6rW7i8r9cu8niKcwCmcgwfXUIc7aEATGIzgGV7g1Zk5b86787FYLTj5zTH8gfP5A01LlDU=</latexit>

S5
<latexit sha1_base64="vYV7qt2ryScrp+jzJmmhfNLkz18=">AAAB+3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKRo8BLx4jmgckS5idzCZDZmaXmV4hhPyCV717E69+jFe/xN1kD5pY0FBUdVNNBbEUFl33yymsrW9sbhW3Szu7e/sH5cOjlo0Sw3iTRTIynYBaLoXmTRQoeSc2nKpA8nYwvs389hM3VkT6EScx9xUdahEKRjGTHvq1Ur9ccavuHGSVeDmpQI5Gv/zdG0QsUVwjk9TarufG6E+pQcEkn5V6ieUxZWM65N2Uaqq49afzX2fkLFUGJIxMOhrJXP19MaXK2okK0k1FcWSXvUz81wvUUjKGN/5U6DhBrtkiOEwkwYhkRZCBMJyhnKSEMiPS3wkbUUMZpnVlpXjLFayS1kXVq1Wv7i8r9cu8niKcwCmcgwfXUIc7aEATGIzgGV7g1Zk5b86787FYLTj5zTH8gfP5A07glDY=</latexit>

S6
<latexit sha1_base64="iREkJk7HqtzF8VNhCEyGFISw0As=">AAAB+3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKGo8BLx4jmgckS5idzCZDZmaXmV4hhPyCV717E69+jFe/xN1kD5pY0FBUdVNNBbEUFl33yymsrW9sbhW3Szu7e/sH5cOjlo0Sw3iTRTIynYBaLoXmTRQoeSc2nKpA8nYwvs389hM3VkT6EScx9xUdahEKRjGTHvq1Ur9ccavuHGSVeDmpQI5Gv/zdG0QsUVwjk9TarufG6E+pQcEkn5V6ieUxZWM65N2Uaqq49afzX2fkLFUGJIxMOhrJXP19MaXK2okK0k1FcWSXvUz81wvUUjKGN/5U6DhBrtkiOEwkwYhkRZCBMJyhnKSEMiPS3wkbUUMZpnVlpXjLFayS1kXVu65e3V9W6pd5PUU4gVM4Bw9qUIc7aEATGIzgGV7g1Zk5b86787FYLTj5zTH8gfP5A1B1lDc=</latexit>

S7

<latexit sha1_base64="mIz57AWVv1o4mUHMG3WNxcY+r4w=">AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWbE17LgxmVF+4B2KJk004YmmSHJCGXsJ7jVvTtx68+49UtM21lo64ELh3Pu5VxOmAhurOd9ocLK6tr6RnGztLW9s7tX3j9omjjVlDVoLGLdDolhgivWsNwK1k40IzIUrBWObqZ+65Fpw2P1YMcJCyQZKB5xSqyT7us9v1eueFVvBrxM/JxUIEe9V/7u9mOaSqYsFcSYju8lNsiItpwKNil1U8MSQkdkwDqOKiKZCbLZqxN84pQ+jmLtRlk8U39fZEQaM5ah25TEDs2iNxX/9UK5kGyj6yDjKkktU3QeHKUC2xhPe8B9rhm1YuwIoZq73zEdEk2odW2VXCn+YgXLpHlW9S+rF3fnldp5Xk8RjuAYTsGHK6jBLdShARQG8Awv8Iqe0Bt6Rx/z1QLKbw7hD9DnDwySlBo=</latexit>

P1
<latexit sha1_base64="XNDKlPlf/yXZjoqughf7R/AdCcQ=">AAAB+nicbVC7SgNBFL0bXzG+opY2g0GwCrshPsqAjWVE84BkCbOT2WTIzOwyMyuENZ9gq72d2Poztn6Jk80WmnjgwuGcezmXE8ScaeO6X05hbX1jc6u4XdrZ3ds/KB8etXWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJjdzv/NIlWaRfDDTmPoCjyQLGcHGSvfNQW1QrrhVNwNaJV5OKpCjOSh/94cRSQSVhnCsdc9zY+OnWBlGOJ2V+ommMSYTPKI9SyUWVPtp9uoMnVlliMJI2ZEGZervixQLracisJsCm7Fe9ubiv14glpJNeO2nTMaJoZIsgsOEIxOheQ9oyBQlhk8twUQx+zsiY6wwMbatki3FW65glbRrVe+yenFXrzTqeT1FOIFTOAcPrqABt9CEFhAYwTO8wKvz5Lw5787HYrXg5DfH8AfO5w8OJpQb</latexit>

P2

<latexit sha1_base64="ZMwfPDhaYT8nO/wDAewpeObKcTw=">AAAB+nicbVC7SgNBFL0bXzG+opY2g0GwCrsaH2XAxnJF84BkCbOT2WTIzOwyMyuENZ9gq72d2Poztn6Jk2QLTTxw4XDOvZzLCRPOtHHdL6ewsrq2vlHcLG1t7+zulfcPmjpOFaENEvNYtUOsKWeSNgwznLYTRbEIOW2Fo5up33qkSrNYPphxQgOBB5JFjGBjpXu/d94rV9yqOwNaJl5OKpDD75W/u/2YpIJKQzjWuuO5iQkyrAwjnE5K3VTTBJMRHtCOpRILqoNs9uoEnVilj6JY2ZEGzdTfFxkWWo9FaDcFNkO96E3Ff71QLCSb6DrImExSQyWZB0cpRyZG0x5QnylKDB9bgoli9ndEhlhhYmxbJVuKt1jBMmmeVb3L6sVdrVKv5fUU4QiO4RQ8uII63IIPDSAwgGd4gVfnyXlz3p2P+WrByW8O4Q+czx8PupQc</latexit>

P3

<latexit sha1_base64="NrKeSKuTAeDvdyIESKvbVKBkgUE=">AAAB+nicbVDLSgMxFL3xWeur6tJNsAiuyozUx7LgxmVF+4B2KJk004YmmSHJCGXsJ7jVvTtx68+49UtM21lo64ELh3Pu5VxOmAhurOd9oZXVtfWNzcJWcXtnd2+/dHDYNHGqKWvQWMS6HRLDBFesYbkVrJ1oRmQoWCsc3Uz91iPThsfqwY4TFkgyUDzilFgn3dd71V6p7FW8GfAy8XNShhz1Xum7249pKpmyVBBjOr6X2CAj2nIq2KTYTQ1LCB2RAes4qohkJshmr07wqVP6OIq1G2XxTP19kRFpzFiGblMSOzSL3lT81wvlQrKNroOMqyS1TNF5cJQKbGM87QH3uWbUirEjhGrufsd0SDSh1rVVdKX4ixUsk+Z5xb+sXNxVy7VqXk8BjuEEzsCHK6jBLdShARQG8Awv8Iqe0Bt6Rx/z1RWU3xzBH6DPHxFOlB0=</latexit>

P4

<latexit sha1_base64="ttBmpPM4UMSYUhCiHG6Dqn9rgek=">AAAB+nicbVC7SgNBFL0bXzG+opY2g0GwCruSqGXAxjKieUCyhNnJbDJkZnaZmRXCmk+w1d5ObP0ZW7/E2WQLTTxw4XDOvZzLCWLOtHHdL6ewtr6xuVXcLu3s7u0flA+P2jpKFKEtEvFIdQOsKWeStgwznHZjRbEIOO0Ek5vM7zxSpVkkH8w0pr7AI8lCRrCx0n1zUB+UK27VnQOtEi8nFcjRHJS/+8OIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10/uoMnVlliMJI2ZEGzdXfFykWWk9FYDcFNmO97GXiv14glpJNeO2nTMaJoZIsgsOEIxOhrAc0ZIoSw6eWYKKY/R2RMVaYGNtWyZbiLVewStoXVe+yWr+rVRq1vJ4inMApnIMHV9CAW2hCCwiM4Ble4NV5ct6cd+djsVpw8ptj+APn8wcS4pQe</latexit>

P5
<latexit sha1_base64="SAoXiLXokFE/u/4+cvj6RF1Am18=">AAAB+nicbVC7SgNBFL0bXzG+opY2g0GwCrsSo2XAxjKieUCyhNnJbDJkZnaZmRXCmk+w1d5ObP0ZW7/E2WQLTTxw4XDOvZzLCWLOtHHdL6ewtr6xuVXcLu3s7u0flA+P2jpKFKEtEvFIdQOsKWeStgwznHZjRbEIOO0Ek5vM7zxSpVkkH8w0pr7AI8lCRrCx0n1zUB+UK27VnQOtEi8nFcjRHJS/+8OIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10/uoMnVlliMJI2ZEGzdXfFykWWk9FYDcFNmO97GXiv14glpJNeO2nTMaJoZIsgsOEIxOhrAc0ZIoSw6eWYKKY/R2RMVaYGNtWyZbiLVewStoXVa9evbyrVRq1vJ4inMApnIMHV9CAW2hCCwiM4Ble4NV5ct6cd+djsVpw8ptj+APn8wcUdpQf</latexit>

P6
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Figure 2.3: PD-structure - an example of a PD-structure used to define the feed-forward

DAG structure of an EiNet. The image is divided into halves horizontally and vertically

and then into quarters. The subsequent partitions (cuts) and regions (sub-images) are

then populated with product Pi, leaf Li and sum nodes Si. The red box shows an einsum

operation, the blue box shows an einsum layer, and the green box shows the introduction

of a mixing layer to deal with the two product nodes introduced from two separate cuts

of the root image.

processes including LearnSPN [Gens and Pedro, 2013] and its various augmentations

and successors [Vergari et al., 2015, Rahman and Gogate, 2016, Di Mauro et al., 2018].

One particular approach for creating DAGs for PCs, and by extension EiNets,

specifically when working with image data, was introduced by Poon and Domingos

[2011], which we refer to as PD-structure. PD-structures are suitable for image data

as they encode relative locations of regions within images, are very flexible, can work

with images of any size, and provide a scalable way of producing EiNets. Furthermore,

the ability to encode relative positions within a PC’s DAG structure helps to provide a

useful inductive bias for these models when dealing with images.

Following the notation used by Peharz et al. [2020a], a PD structure is formed from

an image by applying axis-aligned cuts which are displaced by a specific step size, ∆,
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recursively dividing an image into smaller and smaller rectangles. Note that ∆ can also

be a collection of step sizes such as ∆ = {7,28}. For collections of step sizes, each

rectangle is divided using the largest step size within ∆ that fits within the largest edge

of the rectangle. For example, for a 2×8 rectangle with ∆ = {5,15}, a step size of 5

would be used to cut the image along the edge of length 8, creating 2× 5 and 2× 3

rectangles. The recursive splitting stops when no step size in ∆ can be used to split any

rectangle.

The cutting process can be used to define a bipartite graph (really a region graph

[Peharz et al., 2020c]) with alternating nodes corresponding to cuts (partitions) and

nodes corresponding to the subsequent sub-images created (regions). We can then

construct an EiNet by populating each partition with a product node and all but the final

leaf regions, which become leaf nodes, with sum nodes. This then creates an alternating

graph of sum and product nodes. We can then group the sum and product nodes into

einsum operations and subsequently einsum layers using a topological ordering of the

nodes within the DAG (see algorithm 1 in Peharz et al. [2020a]).

Care must be taken for sub-images that can be divided by multiple cuts. This

would result in the sum node in such a sub-image’s corresponding region having more

than one product node as children, which is against the assumptions introduced in

Section 2.3.1. To get around this, for such scenarios, we introduce a mixing layer, as

discussed previously. Figure 2.3 depicts how a PD-structure is formed and used to

create a DAG for an EiNet, including how mixing layers are introduced.

Importantly, we note that using PD-structures creates smooth and decomposable

PCs and EiNets. Moreover, we see that dividing an image with a single horizontal cut

and then a vertical cut or by a single vertical cut and then a horizontal cut would lead to

the same resulting sub-image region. Importantly, we reuse the nodes in these repeated

sub-regions within an EiNet’s DAG, which leads to parameter sharing and provides a

further good inductive bias to the subsequent EiNet model and can be thought of as

reminiscent of convolutions within CNNs [Vergari et al., 2022].

2.3.3 Training PCs and EiNets

Both standard PCs and EiNets can be trained using SGD or by thinking of these models

as latent variables models in order to use EM, specifically s-EM. Indeed, Peharz et al.

[2020a] show that for EiNets, the use of modern automatic differentiation methods can

lead to a straightforward and efficient implementation of the s-EM algorithm, adapted
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from previous EM updates derived for PCs Peharz et al. [2016]. Moreover, formulating

EiNets and PCs as latent variable models allows for ancestral sampling [Peharz et al.,

2020a], allowing PCs to become generative models capable of generating new samples.

On more straightforward binarised datasets commonly used in the PC literature

[Peharz et al., 2016, 2020c, Gens and Pedro, 2013], Peharz et al. [2020a] show that

s-EM generally leads to better generalisation performance than SGD or its popular

variant the Adam optimiser. However, the authors do not complete the comparison

between training methods on larger and more complex datasets.

One major downside of MLE training is that it often leads to overfitting or difficulty

in training large and complex models (c.f. Section 2.1.2). PCs and EiNets are no

different, with the problem of overfitting and difficulties with MLE training, alongside

proposed solutions such as entropy regularisation or EM with bagging, having been

discussed within the PC literature [Liang et al., 2017, Liu and Van den Broeck, 2021,

Vergari et al., 2015]. The problem with model complexity and overfitting becomes a

more significant worry for EiNets which are readily scalable to models with millions, if

not billions, of parameters.

2.4 Motivation and Research Problems

As noted in Section 2.1.2 and Section 2.3.3, EiNets and large probabilistic models, in

general, suffer from problems such as overfitting when trained with MLE. This leads us

to question if there are viable alternative parameter learning schemes for these models

that circumvent some of these issues whilst still producing good density estimators and

generative models.

Conditional training schemes, including CLE, as introduced in section 3.2, are

particularly suitable for smooth and decomposable EiNets, which allow for the efficient

computation of CON queries over arbitrarily sized subsets of variables. EiNets, there-

fore, bypass the increased computational cost of using larger patch sizes π j for CLE

training, as discussed in Section 2.1.3. In addition, EiNets are well adapted for training

on more complex and high-dimensional datasets containing image data whilst maintain-

ing the required tractable inference routines for CLE training (c.f. Section 2.3.1). These

points, alongside the similar theoretical proprieties to MLE, make CLE a theoretically

justifiable alternative parameter learning scheme to consider for training EiNets.

Let us focus on CCLE, a specific form of CLE, where each conditional in the CCLL

involves all of the components of a random variable X (c.f. Section 2.1.3). Consider a
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conditional log probability of a patch of pixels π within an image, forming a term in the

CCLL. We can write the resulting log-conditional using the definition of conditional

probability as log p(xxxπ|xxx\π) = log p(xxx)− log p(xxx\π).6 We can see that by splitting a

random variable X into disjoint sets consisting of a patch π and its complement, we

recover the full joint distribution and a marginal distribution involving the variables

in the complement of the patch. The marginal term is interestingly reminiscent of

penalisation or regularisation terms common within machine learning [Bishop and

Nasrabadi, 2006, Liu and Van den Broeck, 2021].

Moreover, if we consider using CCLE during training, our model would be trained to

maximise the likelihood of patches of images conditioned on the remaining portions of

the images, essentially learning to model local image features conditionally. Although

we would not expect such models to produce better whole image samples or overall

densities, as unlike MLE, they are not directly trained for this, training models to model

local regions in images should allow them to better perform tasks such as inpainting

for dealing with missing patches of data, an important task in computer vision [Peharz

et al., 2020a, Yasuda et al., 2005, Lugmayr et al., 2022].

These motivating points lead us to consider three specific research questions which

we aim to investigate within this work:

Q 1: Is CCLE a viable alternative method to MLE for training EiNet density

models in terms of generalisation performance and generative quality?

Q 2: Do CCLE objectives act as a form of regularisation during training, helping

EiNet models to be less prone to overfitting?

Q 3: Does CCLE training lead to greater inpainting quality over MLE training?

As far as we can tell within the PC literature, looking solely into CCLE training

for PCs has yet to be investigated, placing this as novel research into new methods for

training PCs, particularly EiNets. Moreover, addressing the above research questions

will provide information and hint at the utility of more broadly incorporating CCLE

training for other probabilistic models that allow for tractable CCLL, where full LL

estimation may be difficult or infeasible.

6Note that if we considered CLE, then we would not recover the full likelihood here, but would
recover two marginals distributions instead (c.f. eq. (2.5)). Hence, to connect with MLE, we focus on
CCLE training in this work.).
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Methodology

This chapter outlines the methodology for our proposed investigations into using CCLE

as an alternative method to MLE for training EiNets, as motivated in Section 2.4. We

focus on image datasets following the scalability of EiNets demonstrated by Peharz

et al. [2020a]. As we will deal with image data, we also construct EiNet models

using PD-structures which provide a suitable inductive bias for images as discussed in

Section 2.3.2.

Following the notation conventions introduced in Chapter 2, we consider a dataset

D = {xxx(1), . . . ,xxx(n)} and further consider mini-batches of size nmini, randomly sampled

from D, which at training step t we denote as Dmini
t = {xxx(i1),xxx(i2), · · · ,xxx(inmini)} ⊂ D,

for a random subset of indices {i1, · · · inmini} ⊂ {1,2, . . .n}. Finally, for coordinates in

images, we consider (x,y) ∈ N2
0 to be the pixel in the xth row and yth column of the

image with the origin, (0,0) (making use of zero indexing), located in the top left

corner.

3.1 MLE Baselines

As discussed in section 2.3.3 there are two main methods for training EiNets via

MLE, SGD and EM. We present details of both methods below that we will use

within our experiments, introducing MLE for SGD within the context of empirical risk

minimisation.

3.1.0.0.1 MLE via SGD. In the domain of machine learning, particularly for Maxi-

mum Likelihood Estimation (MLE) training via Stochastic Gradient Descent (SGD),

we often adopt the perspective of Empirical Risk Minimisation (ERM) [Vapnik, 1991].

23
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This paradigm focuses on minimising the expected risk over the true data generating

distribution. Specifically, for a statistical model p(XXX ;θθθ), the risk we aim to minimise

is expressed as the expectation of the negative log-likelihood over the underlying data

distribution:

R (θθθ) = EX∼p∗(XXX)[− log p(XXX ;θθθ)], (3.1)

where R (θ) denotes the expected risk. In practice, this expectation is intractable, as we

generally do not know the underlying data distribution, as discussed in Section 2.1.1.

To get around this issue, we draw unbiased MC samples from a training set which

we assume is drawn i.i.d from the underlying distribution of data. At each training step

t, we draw a mini-batch Dmini
t and update the model parameters θθθ by minimising the

empirical risk loss computed over this mini-batch:

LERM(Dmini
t ;θθθ) =− 1

Nmini

Nmini

∑
i=1

log p
(

xxx(i);θθθ

)
. (3.2)

This mini-batch loss serves as an unbiased estimator of the expected risk R (θθθ), ensuring

that each gradient update step is guided towards minimising the true expected risk across

the entire data distribution. The use of mini-batches in SGD provides a balance between

computational efficiency and the accuracy of the risk estimation.

This minimisation of empirical loss over the mini-batch aligns directly with max-

imising the likelihood of the model parameters θθθ given the observed data in our training

set. Therefore, in the context of ERM, the act of minimising risk is equivalent to

maximising the likelihood training data under our model. Hence, we usually use the

notation LMLE to denote the loss in eq. (3.2).

3.1.0.0.2 MLE via EM. For EiNets specifically, the class of density models we focus

on in this work, the EM updates for MLE training using leaf distributions from the

exponential family of distributions were derived by Peharz et al. [2020a]. Due to the

connection with mixture models, they, too, have parameter updates reminiscent of

weighted averages Barber [2012]. Specific details can be found in [Peharz et al., 2020a],

with a corresponding implementation found at [Peharz et al., 2020b], which we utilise

and adapt for our experiments.
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3.2 CCLE Training

We have introduced the general form of a CCLE in Section 2.1.3, which we would like

to train using SGD. In a similar way to the method used to train diffusion models across

multiply denoising time steps [Ho et al., 2020], we formulate the CCLE loss at training

time t as

LCCLL(Dmini
t ;θθθ) = Et∼U(|π|), xxx∼p∗(XXX)

[
− log p

(
xxxπt |xxx\πt ;θθθ

)]
, (3.3)

where U(|π|) denotes the discrete uniform distribution over the possible patches that

could be selected (c.f. Section 2.1.3). Here, we have modelled the loss introduced in

section Equation (2.5) by writing the sum over patches as an expectation over a uniform

distribution over the patches π and ignoring the necessary scaling over the size of π

which will not effect minimisation.

Again this is intractable as we do not know the true underlying data distribution and

so we once again compute an an empirical loss:

LCCLL(Dmini
t ;θθθ) =− 1

Nmini

Nmini

∑
j=1

log p
(

xxx(i j)
πt |xxx(i j)

\πt
;θθθ

)
, (3.4)

where \πt = {1,2, · · · ,k}\πt for k-dimensional data and πt is a uniformly randomly

chosen patch from a predefined collection of patches π.

The proposed method affords a particular degree of freedom in that the collection of

possible patches π and the patches sampled at each time step πt ∈ π can be constructed

and chosen in many different ways. This then reduces our investigation of CCLE

methods to image patch sampling design. We list several approaches that we investigate

in the sections to follow.

3.2.1 Uniform Random Sampling

We term the first sampling method that we investigate uniform random sampling. Using

this method, we consider rectangular patches of size p× q (p pixels in height and

q pixels in width) and consider the set of all possible patches of this size within an

image, defining π. At training step t, we randomly sample a patch uniformly from

this collection which then defines the patch πt to be used within the loss defined in

Equation (3.4).

Specifically, we uniformly select the top left-hand corner of the patch, making sure

only to consider top left-hand corner locations so that the resulting patch would remain
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Figure 3.1: Uniform random sampling patch examples - patch samples, πt , coloured in

red, sampled from MNIST images using random sampling introduced in Section 3.2.1

for patches of size 4×4, 8×8 and 16×16.

.

within the boundaries of the image. We subsequently select the rest of the pixels from

the image to form a size p× q patch relative to this chosen location. For clarity, we

include examples of sampled patches of various sizes using uniform random sampling

in Figure 3.1.

This is a very simple method to begin investigating how well CCLE performs

without imposing any inductive bias in choosing patches. Moreover, this simplistic

sampling method will act as a good baseline for comparison against alternative and

more complicated sampling methods.

3.2.2 Grid Sampling

We note that the samples chosen are single rectangles of contiguous pixels within images

for random uniform sampling. Considering that we are focusing on EiNets formed using

a PD-structure, pixels or patches within an image that are close to each other will also

be ‘close’ to each other within the DAG of the EiNet - that is, PD-structures already take

into account the locality of image regions. This is illustrated in Figure 2.3 where we see

that L1 and L2 could be considered close to each other as they can be produced from a

single region split at S6. Whereas, L1 ad L4 aren’t as close as a single split of a larger

region cannot produce them both. Alternatively, there is a shorter path between L1 and

L2 compared to L1 and L4 within the DAG. Therefore, using contiguous patches may

not add any benefits beyond the inductive bias already provided by the PD-structure of

an EiNets. This leads us to consider investigating non-contiguous patches, which allows
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Figure 3.2: Grid sampling formation - example showing how a grid of patches to be

sampled from is created when using grid sampling, here for image from the F-MNIST

data set. The patches shaded in red show the valid patches for this iteration that each

can be sampled with grid probability γ.

for patches that are made up of pieces of the image that are not local to one another

within the image or the EiNet’s associated PD-structure.

Along these lines, we investigate what we term as grid sampling, which combines

elements of the uniform random sampling method proposed above whilst also allowing

for sampling non-contiguous patches.

Precisely, we form a grid of potential patches of size p×q to sample from for each

batch at training step t. To do this, we first randomly sample a point with coordinates

(X0 = x0,Y0 = y0) as x0 ∼U(−p+1,−p+2, · · · ,0) and y0 ∼U(−q+1,−q+2, · · ·0)
which will become the top left-hand corner of the grid. By sampling the top left-hand

corner like this, we can form a grid that is randomly translated for each batch.

From here, we build a grid of patches equidistant in the vertical and horizontal

direction every p and q pixels, respectively, starting at the point (X0,Y0). Note that we

discard any patches that are not entirely within the image. From this formed grid of

valid patches, we loop through and select each patch within the grid with probability γ,

which we refer to as the grid probability. We then form πt as the concatenation of the

randomly selected patches from the shifted grid. In this method, we can think of π as

the collection of patches sampled from each possible shifted grid we could form over an

image using grid patch sizes of p×q. For clarity, we include a visual demonstration of

how the grid of patches is generated at each training iteration in Figure 3.2 and include



Chapter 3. Methodology 28

(4
,
4
),
∞

=
0
.6

2
7
2

(8
,
8
),
∞

=
0
.1

4
5
1

(8
,
8
),
∞

=
0
.8

8
8
9

<latexit sha1_base64="430JewbPdBWSH5wCWRCXKmDZP04=">AAACAXicbVC7SgNBFL0bXzG+opY2g0GwCrshPsqAjWUE88BkCbOT2WTI7Owyc1cIIZW/YKu9ndj6JbZ+iZNkC008cOFwzr2cywkSKQy67peTW1vf2NzKbxd2dvf2D4qHR00Tp5rxBotlrNsBNVwKxRsoUPJ2ojmNAslbwehm5rceuTYiVvc4Trgf0YESoWAUrfRQJV0UETek2iuW3LI7B1klXkZKkKHeK353+zFLI66QSWpMx3MT9CdUo2CSTwvd1PCEshEd8I6litoYfzL/eErOrNInYaztKCRz9ffFhEbGjKPAbkYUh2bZm4n/ekG0lIzhtT8RKkmRK7YIDlNJMCazOkhfaM5Qji2hTAv7O2FDqilDW1rBluItV7BKmpWyd1m+uKuWapWsnjycwCmcgwdXUINbqEMDGCh4hhd4dZ6cN+fd+Vis5pzs5hj+wPn8AbKllqQ=</latexit>

4 ⇥ 4

<latexit sha1_base64="z6xVVQ4HhvNFh57UD43cp9DIL5o=">AAACAXicbVC7SgNBFL0bXzG+opY2g0GwCrvBR8qAjWUE88BkCbOT2WTI7Owyc1cIIZW/YKu9ndj6JbZ+iZNkC008cOFwzr2cywkSKQy67peTW1vf2NzKbxd2dvf2D4qHR00Tp5rxBotlrNsBNVwKxRsoUPJ2ojmNAslbwehm5rceuTYiVvc4Trgf0YESoWAUrfRQJV0UETek2iuW3LI7B1klXkZKkKHeK353+zFLI66QSWpMx3MT9CdUo2CSTwvd1PCEshEd8I6litoYfzL/eErOrNInYaztKCRz9ffFhEbGjKPAbkYUh2bZm4n/ekG0lIxh1Z8IlaTIFVsEh6kkGJNZHaQvNGcox5ZQpoX9nbAh1ZShLa1gS/GWK1glzUrZuypf3l2UapWsnjycwCmcgwfXUINbqEMDGCh4hhd4dZ6cN+fd+Vis5pzs5hj+wPn8Ab9plqw=</latexit>

8 ⇥ 8

<latexit sha1_base64="z6xVVQ4HhvNFh57UD43cp9DIL5o=">AAACAXicbVC7SgNBFL0bXzG+opY2g0GwCrvBR8qAjWUE88BkCbOT2WTI7Owyc1cIIZW/YKu9ndj6JbZ+iZNkC008cOFwzr2cywkSKQy67peTW1vf2NzKbxd2dvf2D4qHR00Tp5rxBotlrNsBNVwKxRsoUPJ2ojmNAslbwehm5rceuTYiVvc4Trgf0YESoWAUrfRQJV0UETek2iuW3LI7B1klXkZKkKHeK353+zFLI66QSWpMx3MT9CdUo2CSTwvd1PCEshEd8I6litoYfzL/eErOrNInYaztKCRz9ffFhEbGjKPAbkYUh2bZm4n/ekG0lIxh1Z8IlaTIFVsEh6kkGJNZHaQvNGcox5ZQpoX9nbAh1ZShLa1gS/GWK1glzUrZuypf3l2UapWsnjycwCmcgwfXUINbqEMDGCh4hhd4dZ6cN+fd+Vis5pzs5hj+wPn8Ab9plqw=</latexit>

8 ⇥ 8

<latexit sha1_base64="mYhaiixT/7JnWynErtkr4j7IG28=">AAACCHicbVDLSsNAFJ3UV62PRl26GSyCq5AUbd0IBTcuK9gHtKHcTCft0JkkzEyEEvoD/oJb3bsTt/6FW7/EaZuFth64cDjnXs7lBAlnSrvul1XY2Nza3inulvb2Dw7L9tFxW8WpJLRFYh7LbgCKchbRlmaa024iKYiA004wuZ37nUcqFYujBz1NqC9gFLGQEdBGGtjl/giEAHyDXadWrVcHdsV13AXwOvFyUkE5mgP7uz+MSSpopAkHpXqem2g/A6kZ4XRW6qeKJkAmMKI9QyMQVPnZ4vEZPjfKEIexNBNpvFB/X2QglJqKwGwK0GO16s3Ff71ArCTr8NrPWJSkmkZkGRymHOsYz1vBQyYp0XxqCBDJzO+YjEEC0aa7kinFW61gnbSrjldzru4vK41qXk8RnaIzdIE8VEcNdIeaqIUIStEzekGv1pP1Zr1bH8vVgpXfnKA/sD5/AGKAl+w=</latexit>

� = 0.6272

<latexit sha1_base64="qEAi2LIcLGYvKyuOKT5l7vT/hLE=">AAACCHicbVDLSsNAFJ3UV62PRl26GSyCq5CUVt0IBTcuK9gHtKHcTCft0JkkzEyEEvoD/oJb3bsTt/6FW7/EaZuFth64cDjnXs7lBAlnSrvul1XY2Nza3inulvb2Dw7L9tFxW8WpJLRFYh7LbgCKchbRlmaa024iKYiA004wuZ37nUcqFYujBz1NqC9gFLGQEdBGGtjl/giEAHyDXcer1b2BXXEddwG8TrycVFCO5sD+7g9jkgoaacJBqZ7nJtrPQGpGOJ2V+qmiCZAJjGjP0AgEVX62eHyGz40yxGEszUQaL9TfFxkIpaYiMJsC9FitenPxXy8QK8k6vPYzFiWpphFZBocpxzrG81bwkElKNJ8aAkQy8zsmY5BAtOmuZErxVitYJ+2q41069ftapVHN6ymiU3SGLpCHrlAD3aEmaiGCUvSMXtCr9WS9We/Wx3K1YOU3J+gPrM8fWPuX5g==</latexit>

� = 0.1451

<latexit sha1_base64="TVOyEog9JeH4Db91ZB9m1okUjnU=">AAACBHicbVC7SgNBFJ2NrxhfUUubwSBYhd3gYy2EgI1lBPOAZAl3J7PJkJnZdWZWCCGtv2CrvZ3Y+h+2fomTZAtNPHDhcM69nMsJE860cd0vJ7eyura+kd8sbG3v7O4V9w8aOk4VoXUS81i1QtCUM0nrhhlOW4miIEJOm+HwZuo3H6nSLJb3ZpTQQEBfsogRMFYKOn0QAvA19n3/qlssuWV3BrxMvIyUUIZat/jd6cUkFVQawkHrtucmJhiDMoxwOil0Uk0TIEPo07alEgTVwXj29ASfWKWHo1jZkQbP1N8XYxBaj0RoNwWYgV70puK/XigWkk3kB2Mmk9RQSebBUcqxifG0EdxjihLDR5YAUcz+jskAFBBjeyvYUrzFCpZJo1L2Lsrnd2elaiWrJ4+O0DE6RR66RFV0i2qojgh6QM/oBb06T86b8+58zFdzTnZziP7A+fwBHE2XWQ==</latexit>

� = 8889

Figure 3.3: Grid sampling patch examples - patch samples, πt , coloured in red, sampled

from MNIST images using grid patch sampling introduced in Section 3.2.2. Here, we

provide samples for patches of sizes 4×4 with γ = 0.6272 and 8×8 with γ = 0.8889

which sample on average half of the pixels within the images, and 8×8 with γ = 0.1451

which samples on average one 8×8 patch.

samples generated using grid sampling using different patch sizes and γs in Figure 3.3.

Based on this process, we can calculate the expected number of patches sampled

for a given batch. Denote the number of patches sampled at a given training iteration t

by Nt . Then given a sampled grid starting position, (X0,Y0) = (x0,y0) for an images of

dimensions h×w, we can calculate the expected number of sampled patches given this

grid starting position and a grid with patch sizes of size p×q as:

E[Nt |X0 = x0,Y0 = y0] =



γ⌊(h− x0 − p)/p⌋⌊(w− y0 −q)/q⌋ if x0 < 0,y0 < 0,

γ⌊(h− x0 − p)/p⌋⌊w/q⌋ if x0 < 0,y0 = 0,

γ⌊h/p⌋⌊(w− y0 −q)/q⌋ if x0 = 0,y0 < 0,

γ⌊h/p⌋⌊w/q⌋ else.

(3.5)

where ⌊·⌋ denotes the floor function. Using the total law of expectation and that

p(X0 = x0,Y0 = y0)= pq, we can then calculate the expected number of patches sampled

at a given iteration t using Equation (3.5) as

E[Nt ] =
1
pq

0

∑
x0=−p+1

0

∑
y0=−q+1

E[Nt |X0 = x0,Y0 = y0]. (3.6)

The calculation E[Nt ] allows a more fair comparison against other methods we inves-

tigate, such as uniform random sampling, as we can ensure that, on average, we are

sampling the same number of pixels as other sampling schemes to account for varying

patch sizes as a confounding factor in CCLE performance. For example, we can use
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Figure 3.4: Bisection sampling patch examples - patch samples, πt , coloured in red,

sampled from MNIST images using the bisection sampling introduced in Section 3.2.3

for nbis ∈ {2,4,8}.

Equation (3.6) for a say 8×8 grid to find out what γ we should choose to, on average,

sample a single 8×8 patch to compare against uniform random sampling with 8×8

patches. This turns out to be γ = 0.1451 in this case.

3.2.3 Bisection Sampling

So far, the sampling methods that we have proposed are highly random. This could

provide benefits in modelling images, such as better inpainting capabilities due to

high stochasticity, but could also make training difficult for our model. One factor

contributing to this difficulty is that the information conditioned on during training may

vary in information quality. For example, a sampled patch whose complement lies in

a more central region of an MNIST image will contain more useful information than

a patch whose complement lies close to the border, containing homogeneous regions

of uninformative black pixels. We would therefore like to investigate a method that is

more likely to provide patches whose complements contain more useful information

when conditioned upon so that the conditional nature of CCLE training is better utilised.

As a solution, we propose to investigate what we term bisection sampling. We

consider several bisections of images. Specifically, consider a horizontal line extending

through the centre of an image. We then then divide the π radians along the upper half

of an line into nbis equal angles {π/1,π/2, . . . ,π/nbis}. We then bisect an image along

lines through the central pixel at these angles to the horizontal. For example, using two

bisection lines making angles π/2 and π to the horizontal leads to four potential half
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images, two horizontal and two vertical.

Once generated, we can sample from these half-image patches and condition on the

remaining half of the image. There is an ambiguity when dividing an image on whether

to include the diagonal and, if so, which half to include it in. To solve these issues, we

generate the set of half images for each batch and randomly assign the diagonal to one

of the two generated halves for each bisection. We include examples of samples drawn

using bisection sampling using different values of nbis in Figure 3.4.

3.3 Evaluation Metrics

In order to quantify the quality of the models we train, we consider several evaluation

metrics. These include standard metrics commonly used to evaluate generative image

models in the literature alongside additional methods that we adapt specifically for our

investigations.

3.3.1 Evaluating a Model’s Fit, Overfitting and Generalisation

We record a model’s negative LL (NLL) in bits-per-dimension, as is common in image

modelling, on training and test sets [Kingma and Dhariwal, 2018, Salimans et al.,

2017].1 This allows us to compare how well each model fits the data during training

and how well it generalises to new data, as measured by the LL on the test set. In

particular, this will allow us to investigate how our CCLE-trained models compare as

density estimators to MLE baseline models trained using EM and SGD. This will help

us address our first research question to see if a CCLE objective as framed in Section 3.2

can be a viable training alternative to MLE for training density estimators.

Further, as posed in our second research question, we would like to investigate

whether CCLE training has a regulatory effect during training, making a model less

prone to overfitting. To investigate this, we first give the learning curves of CCLE and

MLE-trained models - curves showing the training and validation LL during training.

Here, we can use the validation LL of models to observe when a model begins to overfit

the training data. This is indicated when the training LL continues decreasing during

training, but the validation LL begins to increase. This highlights that our model is

1The unit bpd is simply the LL or CCLL in base 2 normalised by the number of dimensions (often
pixels, as in our case), that is the number of variables to be predicted, in a probabilistic model. One can
think of bpd as roughly capturing the average number of bits needed to encode the information within
each dataset dimension.
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beginning to generalise worse to new data, becoming too focused and specialised on

the data it sees during training.

In addition to monitoring learning curves, we also give plots comparing the gener-

alisation performance and degree of overfitting seen during training. This is demon-

strated by Liu and Van den Broeck [2021] who use a measure of the degree of over-

fitting for a model M with parameters θθθM, which we denote by O(θθθM), given by

O(θθθM) = (ℓLL(θθθM;Dvalid)− ℓLL(θθθM;Dtrain))/ℓLL(θθθM;Dvalid). This is simply the per-

centage difference of the training LL with respect to the validation LL. Plotting this at

the end of training indicates the difference between how well the model has learned to

fit the data and how well it generalises to new data, therefore acting as a rough indicator

of the degree of overfitting. Liu and Van den Broeck [2021] plot O(θθθM) against the

test LL improvement of a model over the baselines they were comparing against. We

do something similar by plotting the degree of overfitting against the test LL for each

model. This allows us to compare the trade-off and relationship between the degree

of overfitting during training and how well a model can generalise, which can help

us, alongside the analysis of training curves, to investigate whether CCLE objectives

provide a regulatory effect during training, addressing our second research question

discussed in Section 2.4.

3.3.2 Measuring CCLL on the Test Set

During CCLE training, we can record the training loss, which estimates the average

CCLL over the training set. We want to extend this to measure the CCLL on test

sets. This metric would then indicate the conditional generalisation capabilities of our

models. In particular, it quantifies how well our networks can model missing patches of

data given the remaining portions of images. In some sense, this can then be thought of

as a quantitative measure of the inpainting capabilities of a model.

After training, we consider a model M, with parameters θθθM. To measure the CCLL

on the test set, we follow a procedure similar to that introduced by Gens and Pedro

[2013]. Specifically, for each image xxx ∈ Dtest, we randomly sample nwindows patch

windows of size p×q. We then average the conditional likelihood of these patches over

each image’s sampled patches of a given size and over the dataset:

ℓCCLL,(p,q) (θθθM;Dtest) =
1

nwindows pq log(2)|Dtest|
|Dtest|
∑
j=1

nwindows

∑
i=1

log p
(

xxx( j)
πi(p,q)|xxx

( j)
\πi(p,q);θθθM

)
, (3.7)

where here we have given the CCLL in bits per dimension (bpd). This gives a measure
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of the CCLL of our model on the test set for particular patch size p×q.2

Given a set of patch sizes S ⊂ N2, we can compute a measure of the CCLL of our

model on the test set averaged over multiple patch windows as

ℓCCLL (θθθM;Dtest) =
1
|S | ∑

(p,q)∈S
ℓCCLL,(p,q) (θθθM;Dtest) (3.8)

This gives a more general measure of the CCLL of our model on the test set that

evaluates the CCLL performance of a model across a whole collection of patch sizes

rather than for specific patch sizes.

It is worth highlighting that we record both the overall average CCLL in Equa-

tion (3.8) and the average CCLL for particular patch sizes in Equation (3.7) as reporting

both will help to give us a more nuanced picture when evaluating our models. For

example, this will help us see if specific methods perform better on certain patch sizes.

3.3.3 Image Quality

As EiNets are generative models as discussed in Section 2.3.1, we would also like to

evaluate the quality of our models by looking at their generative capabilities, specifically

the quality of images sampled from these models. This provides an alternative measure

of the viability of CCLE as an alternative to MLE for training EiNets.

The Fréchet inception distance (FID)[Heusel et al., 2017] is a standard metric used

within the generative model literature. It considers two sets of data, the test set and

a set of images generated by a model. Firstly, feature representations of the sets of

images are extracted from a deep layer of a pre-trained convolutional neural network,

specifically the Inception-v3 model [Szegedy et al., 2016]. Using these extracted feature

representations, a measure of similarity between the two datasets is then computed

using the Fréchet metric [Fréchet, 1957] between two Gaussian distributions fitted to the

extracted feature representations of both datasets [Heusel et al., 2017]. The pre-trained

Inception-v3 model’s deeper layers have learned to pick out key features within images,

such as edges and objects, which can then be used to evaluate the similarity of pairs of

images.

In particular, we can compute the FID scores on whole image samples (FIDfull) as a

measure of the overall quality of generated samples from our models. Moreover, we can

report FID scores on partial image samples (FIDinp), that is, for images with missing

2Note that here we average over the number of pixels in the patch used to compute the conditional
likelihood for an image not the total number of pixels in each image as one would do when converting
LLs to bpd.
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patches which are subsequently filled, conditioned on the rest of the image. Therefore,

FIDinp scores will help us to investigate the inpainting capabilities of our models.

Inception scores (IS), in general, measures like FID scores based on feature extrac-

tion from inception models, seem to correlate with human judgment on evaluating image

quality [Salimans et al., 2016]. However, a limitation of IS is that they are black-box

methods involving neural networks. Similarly to other pre-trained metrics like COMET

[Rei et al., 2020], a pre-trained model used for evaluating machine translation models,

IS metrics lack concrete interpretability. Therefore, to supplement FID scores, we

include generated samples from our models to give a more concrete and more easily

interpretable measure of the quality of sampled images.



Chapter 4

Experiments

In this chapter, we give specific details on the setup and findings of our experiments

investigating the research questions detailed in Section 2.4.

4.1 Experimental Setup

We investigate EiNet models trained on 28×28 greyscale images from MNIST [LeCun

et al., 1998] and Fashion-MNIST (F-MNIST) [Xiao et al., 2017a]. Treating each pixel

as a discrete random variable therefore results in models defined over a 784-dimensional

multivariate random variable. We use EiNet models generated with a PD-structure of

∆ = {4,1}, cutting images recursively into rectangles down to 4×4 patches and then

to 1×1 pixels, in line with the description in Section 2.3.2.

Our models use categorical leaf distributions with 256 categories, representing pixel

values, and K = 32 distributions within each leaf node. In particular, our hyperparame-

ters, including the PD structure, are comparable to those used by Peharz et al. [2020a].
1

We train baseline models using MLE with SGD and s-EM, with batch sizes of 100

and learning rates of 0.01 and s-EM step-sizes of 0.05 on MNIST and F-MNIST. 2 The

models are denoted by SGD and EM.

For grid sampling, we investigate square grid patch sizes of 4 and 8. We choose

values of γ so that, on average, we sample single square patches of sizes 4 and 8 to

1Peharz et al. [2020a] mention using ∆ = {7,28}. Looking at their code [Peharz et al., 2020b], we
see that they are referring to dividing the MNIST images into 7 and 28 pieces along each axis, which
results in step sizes of 4 and 1 - c.f. their SVHN training for comparison. Care must be taken with the
order of the ∆ values in their code.

2These values were chosen through a hyperparameter search based on the best generalising model.

34
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compare against uniform random sampling and patches that, on average, sample half of

an image worth of pixels to compare against bisection sampling. This allows for fairer

comparisons between methods and accounts for variations in patch sizes and, specifi-

cally, the number of pixels sampled. For size 4 grid patches, this means using γ values

of 0.0256, 0.1024 and 0.6272 for comparison against RAND4, RAND8 and bisection

sampling respectively. For size 8 grid patches, this means using γ values of 0.1451 and

0.8889 for comparison against RAND8 and bisection sampling, respectively.3.

The datasets are divided into training (50,000 images), validation (10,000 images),

and test sets (10,000 images). Training is done for up to 64 epochs with early stopping

using a patience of 8 epochs based on validation LL. LLs are reported in bpd, and the

training is performed on NVIDIA RTX A6000 GPUs, typically completing in under 10

hours.

For test evaluation of our models, we record the test LL and the test negative CCLL

(NCCLL) in bpd as defined in Equation (3.7) and Equation (3.8). For NCCLL test

scores, we use a variety of patch sizes for a fine-grained view of model performance on

various patch shapes and sizes. In particular, we used patch sizes of 4×4,4×12,8×8

and 12× 12, where rectangular patches’ dimensions are swapped randomly during

evaluation. For each image in a data set’s test set, we sample three independent patches

for computational efficiency, using nsample = 3 in Equation (3.7) and Equation (3.8).

We assess the generative quality of our models both visually and by using FID

scores. For FID scores, we first sample the same number of images as in each test

set and compute the similarity between the sampled images and the test set using FID

scores which we denote by FIDfull. Furthermore, we also include FID scores to measure

a model’s capability in inpainting images with missing data. Specifically, we report FID

scores, denoted by FIDinp, comparing each data set’s test set to a collection of inpainted

images from each model. To align the FIDinp to our test NCCLL scores, we use the

same patch sizes as for the test NCCLL evaluation. In particular, we randomly sample

a patch size for a given test set image and use our model to fill in the missing patch

using MAP inference (c.f. Section 2.1.4), which is feasible and efficient for EiNets

[Peharz et al., 2020a, Choi et al., 2020]. To allow fair comparisons, we use the same

patch locations and sizes for each test set image when computing both test NCCLL and

FIDinp scores.

The code we have written to conduct these experiments can be found at this GitHub

repository. Our code adapts and builds upon [Peharz et al., 2020b].

3These γ values were calculated to 4 dp. using a script that computes Equation (3.6).

https://github.com/tomalamb/ccle-einets
https://github.com/tomalamb/ccle-einets
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4.2 Results

In this section, we present the results of our experiments following the experimental

design given above in Section 4.1. We divide this section into three parts corresponding

to each research question introduced in Section 2.4.

4.2.1 CCLE as a viable alternative to MLE training (Q1)

NLL comparison Table 4.1 shows training and test NLL of our EiNet models. On

MNIST, our EM model achieves comparable test NLL performance to the model Peharz

et al. [2020a] use in their MNIST experiments, highlighting that we can replicate their

results. Moreover, the SGD models achieve reasonable test NLLs compared to other

PC models trained on these datasets [Liu et al., 2021].

The test NLL of the MNIST and F-MNIST SGD models are lower than for the

EM models, although the gap between EM and SGD seems tighter on F-MNIST, with

the EM algorithm seemingly able to better fit F-MNIST data. This suggests that SGD

training could allow for a greater generalisation performance than s-EM training of

larger models trained on larger datasets. It would be interesting for future work to focus

on the comparison of s-EM and SGD for training larger EiNet models on more complex

data sets. [Peharz et al., 2020a] did this for smaller binariased datasets but failed to

compare s-EM to SGD on the larger datasets of SVHN [Netzer et al., 2011], MNIST

and CelebA [Liu et al., 2015], as we noted in Section 2.3.1.

We note that the test NLLs of our SGD models are higher than other probabilistic

models, such as normalising flows [Keller et al., 2021]. However, unlike these models,

we emphasise that EiNets allow for exact and tractable inference of various types. This

is particularly impressive, given the size and complexity of the models and datasets we

work with.

Comparing the CCLE models, we notice that on both datasets the models utilising

uniform random sampling generalise worse than the other CCLE methods and, looking

at their training NLLs, seem less able to fit the training data than the other CCLE models.

In particular, this indicates that these models are underfitting. However, RAND16 on

MNIST seems to be overfitting the data, as shown by its low training NLL and its high

test NLL. The general poor fitting and generalisation could be due too to the fact that

when using random sampling, at each training step, we have to model the conditional

likelihood of ever-changing, most likely consecutively non-overlapping patch locations

for which there are many. After optimising for one patch, a model must suddenly
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Table 4.1: NLL and FIDfull scores - average negative training and test LLs (bpd) of EiNet

models trained on MNIST and F-MNIST alongside their FIDfull score. Lower is better.

Model MNIST F-MNIST
(M) −ℓLL (θθθM ;Dtrain) −ℓLL (θθθM ;Dtest) FIDfull −ℓLL (θθθM ;Dtrain) −ℓLL (θθθM ;Dtest) FIDfull

EM 1.238 1.249 173.644 3.295 3.348 403.604
SGD 111...111333555 111...111999555 111555999...111111999 333...111999000 333...333222999 111111999...222555222

RAND4 1.315 1.346 255.204 3.488 3.559 228.446
RAND8 1.206 1.273 238.499 3.372 3.500 192.118
RAND16 1.160 1.263 238.235 3.370 3.521 186.351

BISnbis=2 1.152 1.211 180.320 333...111999777 3.339 123.707
BISnbis=8 1.148 1.207 176.031 3.204 333...333333000 132.872
BISnbis=32 1.144 1.203 172.471 3.200 3.337 111222222...777666999

GRID4,γ=0.0256 1.212 1.263 208.416 3.309 3.400 175.426
GRID4,γ=0.1024 1.197 1.256 204.004 3.260 3.375 148.063
GRID4,γ=0.6272 1.152 1.215 179.734 3.216 3.344 140.870
GRID8,γ=0.1451 1.162 1.222 186.534 3.216 3.352 149.865
GRID8,γ=0.8889 111...111333000 111...111999777 111666222...000888111 3.202 3.335 136.320

switch to optimising for another patch that could be far away in the image, making such

training difficult and could introduce high variability in training updates.

We observe that bisection sampling models fit the training data sets reasonably

well and obtain good generalisation performance, surpassing the baseline EM models

and coming reasonably close to the baseline SGD models. We observe that all of

the bisection sampling models generalise comparably well, indicating that increasing

the number of bisections has a negligible effect on the model’s overall fit to a data

distribution.

For grid sampling, we see that using large values of γ generally leads to better

performance for CCLE training. Larger values of γ indicate that more pixels are

being sampled at every training iteration on average. In particular, we note comparing

GRID4,γ=0.6272, GRID8,γ=0.8889 and the bisection models, which all sample on average

comparable patch sizes, that all models show similar performance for the most part.

These two observations, alongside the performance of bisection models and the trend

in uniform random sampling models, hint that using larger patch sizes, with MLE

as the limit of this process, seems to allow for better generalisation performance.

This aligns with the observation presented in Section 2.1.3 where it is suggested that

increasing patch sizes reduces the variability in CLE, leading to better estimators on

average [Asuncion et al., 2010]. In addition, the similarity between grid and bisection

performance suggests that patch size may be the more important factor as compared to

how the patches are sampled, contiguously or not, for generalisation performance.

We note that bisection and grid sampling methods with larger γs are also more
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likely to sample consecutive patches containing overlapping regions during training.

For example, consider bisection sampling, where we sample vertical and horizontal

slices of an image which will overlap by a quarter of the image. This could also help to

stabilise training and explain the differences between, say, the performance of the grid

and bisection models and the poor performances of uniform random sampling models,

which are less likely to sample consecutive overlapping patches during training.

Comparing GRID4,γ=0.0256 and GRID8,γ=0.1024 to RAND4 and RAND8, respec-

tively, we see that the grid methods do seem to outperform their counterparts despite on

average sampling the same number of pixels per iteration. This could be because, on

average, the grid sampling models will occasionally see more than one patch, which

may help to stabilise the difficulty in training that we have discussed above when using

random sampling.

Generative comparison Finally, we compare the generative performance of our

models by looking at their FIDfull scores as given in Table 4.1 and generated image

samples in Figure 4.1 and Figure 4.2 in the appendix. We firstly note that the EM models

seem to have an extremely high FIDfull scores indicating that the samples they have

generated are very much unlike the samples in the MNIST and F-MNIST test sets. This

is interesting as the densities of the EM models are not unreasonable on both datasets,

surpassing models such as RAND16. Indeed looking at samples drawn from our EM

models in Figure 4.1 and Figure 4.2, we see that the full images sampled from our

EM models essentially amount to noise. Therefore, the EM models seem to be able to

model the data distribution to some extent but cannot use this to generate whole image

samples.

Interestingly, Peharz et al. [2020a] show that a comparably performing model still

allows for good anomaly detection, confirming that these models are still learning some

information about the distributions they are modelling, which is further shown in our

case by the inpainted images they produce in Figure 4.5. The poor performance of EM

could be due to the random nature of training, indicating that we have fitted noise here.

Future work should look further into this to see if this is a systemic issue when using

EM for training large EiNet models using discrete pixel input variables.

Looking at our CCLE models, all produce FIDfull scores larger than the SGD base-

line models indicating poorer whole image samples are generated by these distributions.

Looking at Figure 4.1 and Figure 4.2, we visually confirm this for a selection of our

models, with the uniform random sampling models producing the worst quality im-
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Ref. EM SGD BIS.32 RAND4 RAND8 GR.4,0.1024 GR.4,0.6272 GR.8,0.1451 GR.8,0.8889

Figure 4.1: MNIST Samples - whole images sampled from a collection of EiNets trained

on MNIST.
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Ref. EM SGD BIS.32 RAND4 RAND8 GR.4,0.1024 GR.4,0.6272 GR.8,0.1451 GR.8,0.8889

Figure 4.2: F-MNIST Samples - whole images sampled from a collection of EiNets

trained on F-MNIST.
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ages on both MNIST and F-MNIST. However, despite their high FIDfull scores, the

remaining models in Figure 4.1 and Figure 4.2 generate reasonable samples with a sem-

blance of structure and form on both datasets. Moreover, models such as BISnbis=32 and

GRID8,γ=0.8889 have comparable FIDfull to the baseline SGD models on both datasets

(closer on MNIST) and we see visually that the samples generated from these models

alongside GRID4,γ=0.6272 are of similar quality also. This is impressive given that these

models are trained to model local regions, highlighting that local modelling can also

allow for reasonable global generation. Again we notice that the larger patch-size

models seem to perform better. The visual difference between sample quality of the

larger patch size CCLL models is negligible, again suggesting that it is patch size more

so than the contiguous nature of the patches that makes a performative difference.

In conclusion, we find that CCLE training is a viable alternative to training
using MLE. Indeed CCLE training, using bisection and grid sampling, can achieve
comparable generalisation and generative performance as MLE SGD-trained
models and that can outperform MLE models trained via EM, with these EM
models showing poor generative quality. Moreover, we find that generally, the larger
the patch sizes used for CCLE training, the better the generalisation performance
and generative performance.

4.2.2 CCLE objectives as regularisation (Q2)

Now we look into whether CCLE objectives have a regularisation effect during training

as discussed in Section 2.4. Looking at Table 4.1, we note that the SGD baseline models

achieve the lowest training NLL (apart from one model on MNSIT). Moreover, if we

look at Figure 4.3, we see that the SGD model begins to overfit the earliest during

training on MNIST as shown by the earliest increase in validation NLL whilst its

training NLL decreases. Adding to this, in Figure 4.4, we see that the SGD model

shows one of the highest degrees of overfitting on both MNIST and F-MNIST. All

of this goes to show the tendency of EiNets trained using MLE via SGD to be prone

to overfit early during training, which fits with our discussions in Section 2.4 and

observations made in the literature [Liu and Van den Broeck, 2021, Shih and Ermon,

2020].

Turning to CCLE-trained models, we can see in Figure 4.3 that the MNIST CCLE

models as a whole do not suffer as greatly from early overfitting as the SGD models.

This is shown as the uptick in validation NLL occurs later in training for most mod-
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6k
<latexit sha1_base64="PcSTgNPkysncfu/ad0XNqrBRZ2k=">AAACAHicbVC7SgNBFL3rM8ZX1FKLxSBYhV3xkTJgYxnBPCQJYXYymwyZmV1m7ophSeMv2GpvJ7b+ia1f4iTZQhMPXDiccy/ncoJYcIOe9+UsLa+srq3nNvKbW9s7u4W9/bqJEk1ZjUYi0s2AGCa4YjXkKFgz1ozIQLBGMLye+I0Hpg2P1B2OYtaRpK94yClBK92X28geMR2Ou4WiV/KmcBeJn5EiZKh2C9/tXkQTyRRSQYxp+V6MnZRo5FSwcb6dGBYTOiR91rJUEclMJ50+PHZPrNJzw0jbUehO1d8XKZHGjGRgNyXBgZn3JuK/XiDnkjEsd1Ku4gSZorPgMBEuRu6kDbfHNaMoRpYQqrn93aUDoglF21neluLPV7BI6mcl/7J0cXterBxl9eTgEI7hFHy4ggrcQBVqQEHCM7zAq/PkvDnvzsdsdcnJbg7gD5zPH3NWlxo=</latexit>

8k
<latexit sha1_base64="i/K9nMImS9kEqSHmA0Ixu5w71CI=">AAACAXicbVC7SgNBFJ2NrxhfUUstBoNgFXbFVxmwsYxgHpgsYXZykwyZnV1m7ophSeUv2GpvJ7Z+ia1f4iTZQhMPXDiccy/ncoJYCoOu++XklpZXVtfy64WNza3tneLuXt1EieZQ45GMdDNgBqRQUEOBEpqxBhYGEhrB8HriNx5AGxGpOxzF4Iesr0RPcIZWuvfcNsIjpsNxp1hyy+4UdJF4GSmRDNVO8bvdjXgSgkIumTEtz43RT5lGwSWMC+3EQMz4kPWhZaliIRg/nX48psdW6dJepO0opFP190XKQmNGYWA3Q4YDM+9NxH+9IJxLxt6VnwoVJwiKz4J7iaQY0UkdtCs0cJQjSxjXwv5O+YBpxtGWVrClePMVLJL6adm7KJ/fnpUqh1k9eXJAjsgJ8cglqZAbUiU1wokiz+SFvDpPzpvz7nzMVnNOdrNP/sD5/AHah5dN</latexit>

10k
<latexit sha1_base64="JZhYwCqLHpp5anCz5SbsBTSONQg=">AAACAXicbVC7SgNBFL0bXzG+opZaLAbBKuwGX2XAxjKCeaBZwuxkNhkyM7vM3BXDkspfsNXeTmz9Elu/xMmj0MQDFw7n3Mu5nDAR3KDnfTm5peWV1bX8emFjc2t7p7i71zBxqimr01jEuhUSwwRXrI4cBWslmhEZCtYMB1djv/nAtOGxusVhwgJJeopHnBK00p1faSN7xGww6hRLXtmbwF0k/oyUYIZap/jd7sY0lUwhFcSYe99LMMiIRk4FGxXaqWEJoQPSY/eWKiKZCbLJxyP32CpdN4q1HYXuRP19kRFpzFCGdlMS7Jt5byz+64VyLhmjyyDjKkmRKToNjlLhYuyO63C7XDOKYmgJoZrb313aJ5pQtKUVbCn+fAWLpFEp++fls5vTUvVwVk8eDuAITsCHC6jCNdSgDhQUPMMLvDpPzpvz7nxMV3PO7GYf/sD5/AHdv5dP</latexit>

12k
<latexit sha1_base64="ytJKMlK16YAfo+nSE7n0Sxis8lQ=">AAACAXicbVC7SgNBFJ31GeMraqnFYBCswq7ERxmwsYxgHpgsYXZykwyZnV1m7ophSeUv2GpvJ7Z+ia1f4iTZQhMPXDiccy/ncoJYCoOu++UsLa+srq3nNvKbW9s7u4W9/bqJEs2hxiMZ6WbADEihoIYCJTRjDSwMJDSC4fXEbzyANiJSdziKwQ9ZX4me4AytdO+V2wiPmA7HnULRLblT0EXiZaRIMlQ7he92N+JJCAq5ZMa0PDdGP2UaBZcwzrcTAzHjQ9aHlqWKhWD8dPrxmJ5YpUt7kbajkE7V3xcpC40ZhYHdDBkOzLw3Ef/1gnAuGXtXfipUnCAoPgvuJZJiRCd10K7QwFGOLGFcC/s75QOmGUdbWt6W4s1XsEjqZyXvonR+Wy5WjrJ6cuSQHJNT4pFLUiE3pEpqhBNFnskLeXWenDfn3fmYrS452c0B+QPn8wfg95dR</latexit>

14k

06/08/2023, 23:00 42fdf2c6-c1ba-4c77-b4a0-0bc9af2bef7a (684×832)

blob:https://wandb.ai/42fdf2c6-c1ba-4c77-b4a0-0bc9af2bef7a 1/1

<latexit sha1_base64="f590gE8gvphh4mGFySy1Rsp1Puk="></latexit> `
L
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<latexit sha1_base64="3u0C96SJhKc9KTBxjBYEDx2RrJQ=">AAAB+nicbVC7SgNBFL0bXzG+opY2Q4JgtewGX2XAxjKieUCyhNnJbDJkZnaZmRXCmk+w1d5ObP0ZW7/ESbKFJh64cDjnXs7lhAln2njel1NYW9/Y3Cpul3Z29/YPyodHLR2nitAmiXmsOiHWlDNJm4YZTjuJoliEnLbD8c3Mbz9SpVksH8wkoYHAQ8kiRrCx0r3v1vrlqud6c6BV4uekCjka/fJ3bxCTVFBpCMdad30vMUGGlWGE02mpl2qaYDLGQ9q1VGJBdZDNX52iU6sMUBQrO9Kgufr7IsNC64kI7abAZqSXvZn4rxeKpWQTXQcZk0lqqCSL4CjlyMRo1gMaMEWJ4RNLMFHM/o7ICCtMjG2rZEvxlytYJa2a61+6F3fn1Xolr6cIJ1CBM/DhCupwCw1oAoEhPMMLvDpPzpvz7nwsVgtOfnMMf+B8/gCJ/pO5</latexit>

1.2

<latexit sha1_base64="eQsZybARlm2XGiKoLkH0mnY+1ck=">AAAB+nicbVC7SgNBFL0bXzG+opY2Q4Jgtez6LgM2lhHNA5IlzE5mkyEzs8vMrBDWfIKt9nZi68/Y+iVOki008cCFwzn3ci4nTDjTxvO+nMLK6tr6RnGztLW9s7tX3j9o6jhVhDZIzGPVDrGmnEnaMMxw2k4UxSLktBWObqZ+65EqzWL5YMYJDQQeSBYxgo2V7n33rFeueq43A1omfk6qkKPeK393+zFJBZWGcKx1x/cSE2RYGUY4nZS6qaYJJiM8oB1LJRZUB9ns1Qk6tkofRbGyIw2aqb8vMiy0HovQbgpshnrRm4r/eqFYSDbRdZAxmaSGSjIPjlKOTIymPaA+U5QYPrYEE8Xs74gMscLE2LZKthR/sYJl0jx1/Uv34u68Wqvk9RThCCpwAj5cQQ1uoQ4NIDCAZ3iBV+fJeXPenY/5asHJbw7hD5zPH4uSk7o=</latexit>

1.3

<latexit sha1_base64="D8okfNOoMD04KajmX6/H6gxJrVQ=">AAAB+nicbVC7SgNBFL0bXzG+opY2Q4JgtexKfJQBG8uI5gHJEmYns8mQmdllZlYIaz7BVns7sfVnbP0SJ8kWmnjgwuGcezmXEyacaeN5X05hbX1jc6u4XdrZ3ds/KB8etXScKkKbJOax6oRYU84kbRpmOO0kimIRctoOxzczv/1IlWaxfDCThAYCDyWLGMHGSve+W+uXq57rzYFWiZ+TKuRo9MvfvUFMUkGlIRxr3fW9xAQZVoYRTqelXqppgskYD2nXUokF1UE2f3WKTq0yQFGs7EiD5urviwwLrScitJsCm5Fe9mbiv14olpJNdB1kTCapoZIsgqOUIxOjWQ9owBQlhk8swUQx+zsiI6wwMbatki3FX65glbTOXf/SvbirVeuVvJ4inEAFzsCHK6jDLTSgCQSG8Awv8Oo8OW/Ou/OxWC04+c0x/IHz+QONJpO7</latexit>

1.4

<latexit sha1_base64="XTezYGQHlJrjirqpQFVXpwLTJcg=">AAAB+nicbVC7SgNBFL0bXzG+opY2Q4JgteyKUcuAjWVE84BkCbOT2WTIzOwyMyuENZ9gq72d2Poztn6Jk2QLTTxw4XDOvZzLCRPOtPG8L6ewtr6xuVXcLu3s7u0flA+PWjpOFaFNEvNYdUKsKWeSNg0znHYSRbEIOW2H45uZ336kSrNYPphJQgOBh5JFjGBjpXvfrfXLVc/15kCrxM9JFXI0+uXv3iAmqaDSEI617vpeYoIMK8MIp9NSL9U0wWSMh7RrqcSC6iCbvzpFp1YZoChWdqRBc/X3RYaF1hMR2k2BzUgvezPxXy8US8kmug4yJpPUUEkWwVHKkYnRrAc0YIoSwyeWYKKY/R2REVaYGNtWyZbiL1ewSlrnrn/p1u4uqvVKXk8RTqACZ+DDFdThFhrQBAJDeIYXeHWenDfn3flYrBac/OYY/sD5/AGOupO8</latexit>

1.5

<latexit sha1_base64="kYvE7wno+HQzT/fiJF7RAV0mc9s=">AAAB+nicbVC7SgNBFL0bXzG+opY2Q4JgteyKRsuAjWVE84BkCbOT2WTIzOwyMyuENZ9gq72d2Poztn6Jk2QLTTxw4XDOvZzLCRPOtPG8L6ewtr6xuVXcLu3s7u0flA+PWjpOFaFNEvNYdUKsKWeSNg0znHYSRbEIOW2H45uZ336kSrNYPphJQgOBh5JFjGBjpXvfrfXLVc/15kCrxM9JFXI0+uXv3iAmqaDSEI617vpeYoIMK8MIp9NSL9U0wWSMh7RrqcSC6iCbvzpFp1YZoChWdqRBc/X3RYaF1hMR2k2BzUgvezPxXy8US8kmug4yJpPUUEkWwVHKkYnRrAc0YIoSwyeWYKKY/R2REVaYGNtWyZbiL1ewSlrnrl9zL+8uqvVKXk8RTqACZ+DDFdThFhrQBAJDeIYXeHWenDfn3flYrBac/OYY/sD5/AGQTpO9</latexit>

1.6

<latexit sha1_base64="mpk4y1oS+dVbyTcfQF4BButCIXY=">AAACAHicbVC7SgNBFJ31GeMramkzJAhWYTf4KgM2lhHMQ5IlzE5ukiEzu8vMXTEsafwFW+3txNY/sfVLnCRbaOKBC4dz7uVcThBLYdB1v5yV1bX1jc3cVn57Z3dvv3Bw2DBRojnUeSQj3QqYASlCqKNACa1YA1OBhGYwup76zQfQRkThHY5j8BUbhKIvOEMr3Vc6CI+YjibdQsktuzPQZeJlpEQy1LqF704v4omCELlkxrQ9N0Y/ZRoFlzDJdxIDMeMjNoC2pSFTYPx09vCEnlilR/uRthMinam/L1KmjBmrwG4qhkOz6E3Ff71ALSRj/8pPRRgnCCGfB/cTSTGi0zZoT2jgKMeWMK6F/Z3yIdOMo+0sb0vxFitYJo1K2bson9+elarFrJ4cOSZFcko8ckmq5IbUSJ1wosgzeSGvzpPz5rw7H/PVFSe7OSJ/4Hz+AGt8lxo=</latexit>

2k
<latexit sha1_base64="j8Dr4jCDslcT5sff9OmkPWr9eEQ=">AAACAHicbVC7SgNBFJ31GeMraqnFYBCswq7ERxmwsYxgHpIsYXZykwyZ2V1m7ophSeMv2GpvJ7b+ia1f4iTZQhMPXDiccy/ncoJYCoOu++UsLa+srq3nNvKbW9s7u4W9/bqJEs2hxiMZ6WbADEgRQg0FSmjGGpgKJDSC4fXEbzyANiIK73AUg69YPxQ9wRla6b7cRnjEdDjuFIpuyZ2CLhIvI0WSodopfLe7EU8UhMglM6bluTH6KdMouIRxvp0YiBkfsj60LA2ZAuOn04fH9MQqXdqLtJ0Q6VT9fZEyZcxIBXZTMRyYeW8i/usFai4Ze1d+KsI4QQj5LLiXSIoRnbRBu0IDRzmyhHEt7O+UD5hmHG1neVuKN1/BIqmflbyL0vltuVg5yurJkUNyTE6JRy5JhdyQKqkRThR5Ji/k1Xly3px352O2uuRkNwfkD5zPH2zmlxY=</latexit>

4k
<latexit sha1_base64="rl9QcqsQRY8pudipHlAUkHpqc74=">AAACAHicbVC7SgNBFL3rM8ZX1FKLwSBYhV3RaBmwsYxgHpIsYXYySYbM7C4zd8WwpPEXbLW3E1v/xNYvcZJsoYkHLhzOuZdzOUEshUHX/XKWlldW19ZzG/nNre2d3cLeft1EiWa8xiIZ6WZADZci5DUUKHkz1pyqQPJGMLye+I0Hro2IwjscxdxXtB+KnmAUrXRfbiN/xHQ47hSKbsmdgiwSLyNFyFDtFL7b3YgliofIJDWm5bkx+inVKJjk43w7MTymbEj7vGVpSBU3fjp9eExOrNIlvUjbCZFM1d8XKVXGjFRgNxXFgZn3JuK/XqDmkrF35acijBPkIZsF9xJJMCKTNkhXaM5QjiyhTAv7O2EDqilD21neluLNV7BI6mclr1y6uD0vVo6yenJwCMdwCh5cQgVuoAo1YKDgGV7g1Xly3px352O2uuRkNwfwB87nD3Aelxg=</latexit>

6k
<latexit sha1_base64="PcSTgNPkysncfu/ad0XNqrBRZ2k=">AAACAHicbVC7SgNBFL3rM8ZX1FKLxSBYhV3xkTJgYxnBPCQJYXYymwyZmV1m7ophSeMv2GpvJ7b+ia1f4iTZQhMPXDiccy/ncoJYcIOe9+UsLa+srq3nNvKbW9s7u4W9/bqJEk1ZjUYi0s2AGCa4YjXkKFgz1ozIQLBGMLye+I0Hpg2P1B2OYtaRpK94yClBK92X28geMR2Ou4WiV/KmcBeJn5EiZKh2C9/tXkQTyRRSQYxp+V6MnZRo5FSwcb6dGBYTOiR91rJUEclMJ50+PHZPrNJzw0jbUehO1d8XKZHGjGRgNyXBgZn3JuK/XiDnkjEsd1Ku4gSZorPgMBEuRu6kDbfHNaMoRpYQqrn93aUDoglF21neluLPV7BI6mcl/7J0cXterBxl9eTgEI7hFHy4ggrcQBVqQEHCM7zAq/PkvDnvzsdsdcnJbg7gD5zPH3NWlxo=</latexit>

8k
<latexit sha1_base64="i/K9nMImS9kEqSHmA0Ixu5w71CI=">AAACAXicbVC7SgNBFJ2NrxhfUUstBoNgFXbFVxmwsYxgHpgsYXZykwyZnV1m7ophSeUv2GpvJ7Z+ia1f4iTZQhMPXDiccy/ncoJYCoOu++XklpZXVtfy64WNza3tneLuXt1EieZQ45GMdDNgBqRQUEOBEpqxBhYGEhrB8HriNx5AGxGpOxzF4Iesr0RPcIZWuvfcNsIjpsNxp1hyy+4UdJF4GSmRDNVO8bvdjXgSgkIumTEtz43RT5lGwSWMC+3EQMz4kPWhZaliIRg/nX48psdW6dJepO0opFP190XKQmNGYWA3Q4YDM+9NxH+9IJxLxt6VnwoVJwiKz4J7iaQY0UkdtCs0cJQjSxjXwv5O+YBpxtGWVrClePMVLJL6adm7KJ/fnpUqh1k9eXJAjsgJ8cglqZAbUiU1wokiz+SFvDpPzpvz7nzMVnNOdrNP/sD5/AHah5dN</latexit>

10k
<latexit sha1_base64="JZhYwCqLHpp5anCz5SbsBTSONQg=">AAACAXicbVC7SgNBFL0bXzG+opZaLAbBKuwGX2XAxjKCeaBZwuxkNhkyM7vM3BXDkspfsNXeTmz9Elu/xMmj0MQDFw7n3Mu5nDAR3KDnfTm5peWV1bX8emFjc2t7p7i71zBxqimr01jEuhUSwwRXrI4cBWslmhEZCtYMB1djv/nAtOGxusVhwgJJeopHnBK00p1faSN7xGww6hRLXtmbwF0k/oyUYIZap/jd7sY0lUwhFcSYe99LMMiIRk4FGxXaqWEJoQPSY/eWKiKZCbLJxyP32CpdN4q1HYXuRP19kRFpzFCGdlMS7Jt5byz+64VyLhmjyyDjKkmRKToNjlLhYuyO63C7XDOKYmgJoZrb313aJ5pQtKUVbCn+fAWLpFEp++fls5vTUvVwVk8eDuAITsCHC6jCNdSgDhQUPMMLvDpPzpvz7nxMV3PO7GYf/sD5/AHdv5dP</latexit>

12k
<latexit sha1_base64="ytJKMlK16YAfo+nSE7n0Sxis8lQ=">AAACAXicbVC7SgNBFJ31GeMraqnFYBCswq7ERxmwsYxgHpgsYXZykwyZnV1m7ophSeUv2GpvJ7Z+ia1f4iTZQhMPXDiccy/ncoJYCoOu++UsLa+srq3nNvKbW9s7u4W9/bqJEs2hxiMZ6WbADEihoIYCJTRjDSwMJDSC4fXEbzyANiJSdziKwQ9ZX4me4AytdO+V2wiPmA7HnULRLblT0EXiZaRIMlQ7he92N+JJCAq5ZMa0PDdGP2UaBZcwzrcTAzHjQ9aHlqWKhWD8dPrxmJ5YpUt7kbajkE7V3xcpC40ZhYHdDBkOzLw3Ef/1gnAuGXtXfipUnCAoPgvuJZJiRCd10K7QwFGOLGFcC/s75QOmGUdbWt6W4s1XsEjqZyXvonR+Wy5WjrJ6cuSQHJNT4pFLUiE3pEpqhBNFnskLeXWenDfn3fmYrS452c0B+QPn8wfg95dR</latexit>

14k

<latexit sha1_base64="DwZiBzRDNDG+vP8DDxqKd7LscN8=">AAAB+HicbVDLSgNBEOyNrxhfUY9eBqPgxbArvo4BLx4TMA9IljA76SRDZnaXmVkhLvkCr3r3Jl79G69+iZNkD5pY0FBUdVNNBbHg2rjul5NbWV1b38hvFra2d3b3ivsHDR0limGdRSJSrYBqFDzEuuFGYCtWSGUgsBmM7qZ+8xGV5lH4YMYx+pIOQt7njBor1c67xZJbdmcgy8TLSAkyVLvF704vYonE0DBBtW57bmz8lCrDmcBJoZNojCkb0QG2LQ2pRO2ns0cn5NQqPdKPlJ3QkJn6+yKlUuuxDOympGaoF72p+K8XyIVk07/1Ux7GicGQzYP7iSAmItMWSI8rZEaMLaFMcfs7YUOqKDO2q4ItxVusYJk0LsredfmqdlmqnGT15OEIjuEMPLiBCtxDFerAAOEZXuDVeXLenHfnY76ac7KbQ/gD5/MHoj+TQw==</latexit> �

<latexit sha1_base64="DwZiBzRDNDG+vP8DDxqKd7LscN8=">AAAB+HicbVDLSgNBEOyNrxhfUY9eBqPgxbArvo4BLx4TMA9IljA76SRDZnaXmVkhLvkCr3r3Jl79G69+iZNkD5pY0FBUdVNNBbHg2rjul5NbWV1b38hvFra2d3b3ivsHDR0limGdRSJSrYBqFDzEuuFGYCtWSGUgsBmM7qZ+8xGV5lH4YMYx+pIOQt7njBor1c67xZJbdmcgy8TLSAkyVLvF704vYonE0DBBtW57bmz8lCrDmcBJoZNojCkb0QG2LQ2pRO2ns0cn5NQqPdKPlJ3QkJn6+yKlUuuxDOympGaoF72p+K8XyIVk07/1Ux7GicGQzYP7iSAmItMWSI8rZEaMLaFMcfs7YUOqKDO2q4ItxVusYJk0LsredfmqdlmqnGT15OEIjuEMPLiBCtxDFerAAOEZXuDVeXLenHfnY76ac7KbQ/gD5/MHoj+TQw==</latexit> �

<latexit sha1_base64="5+J3n4K+ihK0X6lRGQMnrXi95do=">AAACCnicbVDJSgNBFOyJW4xbokcvjUGIlzAjbseAFy+BCGaBZAg9PS9Jk56F7jdqGPIH/oJXvXsTr/6EV7/EznLQxIIHRdV71KO8WAqNtv1lZVZW19Y3spu5re2d3b18Yb+ho0RxqPNIRqrlMQ1ShFBHgRJasQIWeBKa3vB64jfvQWkRhXc4isENWD8UPcEZGqmbL3QQHjGtRj5IOqal6kk3X7TL9hR0mThzUiRz1Lr5744f8SSAELlkWrcdO0Y3ZQoFlzDOdRINMeND1oe2oSELQLvp9PUxPTaKT3uRMhMinaq/L1IWaD0KPLMZMBzoRW8i/ut5wUIy9q7cVIRxghDyWXAvkRQjOumF+kIBRzkyhHElzO+UD5hiHE17OVOKs1jBMmmclp2L8vntWbFC5/VkySE5IiXikEtSITekRuqEkwfyTF7Iq/VkvVnv1sdsNWPNbw7IH1ifP6y2mcs=</latexit>

Model (M)

<latexit sha1_base64="NajFIaTDBSAhtKViKzIobgg1kBc=">AAACAXicbVC7SgNBFJ2NrxhfUUubwSBYhV3xVQYUtIxoHpgsYXYymwyZmV1m7ophSeUv2GpvJ7Z+ia1f4iTZQhMPXDiccy/ncoJYcAOu++XkFhaXllfyq4W19Y3NreL2Tt1EiaasRiMR6WZADBNcsRpwEKwZa0ZkIFgjGFyM/cYD04ZH6g6GMfMl6SkeckrASvdtYI+Q3l5djjrFklt2J8DzxMtICWWodorf7W5EE8kUUEGMaXluDH5KNHAq2KjQTgyLCR2QHmtZqohkxk8nH4/wgVW6OIy0HQV4ov6+SIk0ZigDuykJ9M2sNxb/9QI5kwzhuZ9yFSfAFJ0Gh4nAEOFxHbjLNaMghpYQqrn9HdM+0YSCLa1gS/FmK5gn9aOyd1o+uTkuVXBWTx7toX10iDx0hiroGlVRDVGk0DN6Qa/Ok/PmvDsf09Wck93soj9wPn8A+4KXYw==</latexit>

SGD
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Figure 4.3: Degree of overfitting vs generalisation - plot depicting the degree of overfitting

of each model, O(θθθM), against its test set NLL on MNIST.

els.4 Furthermore, looking at Figure 4.4, we note that on MNIST, most of the CCLE

models show a smaller degree of overfitting during training with often comparable

generalisation performance for grid and bisection models, aligning with our remarks

on Figure 4.3.

On F-MNIST, the story is slightly more complicated as in Figure 4.4, we observe

slightly lower but comparable levels of overfitting between our best performing CCLE

models to the SGD model, but also with comparable generalisation performances.

Significance testing with repeats is required in future work to confirm any overfitting

differences.

On both datasets, we observe in Figure 4.4 and Figure 4.3 that models using larger

patches sizes, even on average as with grid sampling models, show higher degrees of

overfitting. This could be because, for models using smaller patch sizes, as mentioned

already, there are many more potential locations for smaller patches to be placed, which

could make training more difficult and therefore have a greater regularisation effect.

This is further supported by their generally higher training NLL in Table 4.1. This

suggests that a balance is required when training a CCLE model between using smaller

patch sizes for regularisation and using larger patch sizes for the generally greater

generalisation capabilities. This indicates a promising avenue for future research to

4In Figure 4.3, we only plot the first 25 epochs of training, at which point the training of the MLE
SGD-trained model stops due to early stopping.
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Figure 4.4: MNIST learning curves - learning curves of a selection of EiNet models

trained on MNIST. The left figure shows the training NLLs, and the right figure shows the

validation NLLs.

perform a more fine-grained analysis on the relation between patch size, overfitting and

generalisation performance.

Interestingly, on both datasets, we observe that EM achieves the lowest degree of

overfitting compared to MLE trained via SGD or over the CCLE trained models also

trained via SGD. This is less meaningful on MNIST, where EM is not fitting data as

well as the SGD or some of the CCLE models. However, this is rather significant on

F-MNIST, where EM shows very competitive generalisation performance. Overall,

alongside our previous comments on LLs, this suggests that EM could be less likely to

suffer from overfitting in general compared to SGD-based training, which could come at

the cost of being more prone to underfitting depending on the dataset. Again repeated

experiments and additional datasets would be required to make a more definitive

statement.

In conclusion, we find that CCLE objectives show mixed results as a regularisa-
tion method. In particular, we find that the degree of regularisation could depend on
the dataset and the patch size chosen with smaller patch sizes exhibiting a more
significant regularisation effect. Moreover, we find that SGD-based methods, in
general, show more significant degrees of overfitting as compared to EM-trained
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models, which is countered by the fact that the EM models seem to show less
consistent and worse generalisation performance..

4.2.3 Inpainting capabilities of CCLE models (Q3)

NCCLL Comparison We note a significant difference between the NCCLL results

on MNIST and F-MNIST shown in Table 4.2. Indeed, we observe that on MNIST,

the CCLE trained models, although some achieve comparable scores, show higher

and therefore worse NCCLLs than the baseline SGD-trained MLE model, yet lower

than the EM-trained MLE model. However, on F-MNIST, all CCLE models attain

lower NCCLL scores across all patch sizes compared to the MLE baselines, showing

better conditional modelling of local regions. This suggests that CCLE training has

been most effective across all sampling methods on F-MNIST, with all models able to

conditionally generalise better to new local patches.

We observe that the EM-trained MLE baseline models show dramatically higher

NCCLL compared to the rest of the models across all patch sizes, indicating this training

method has learned little on the local structure of the images it is trying to model despite

producing a reasonable density specifically on F-MNIST (c.f. Table 4.1). This is less

expected on F-MNIST, where the EM model shows significantly worse NCCLLs than

models with worse density estimates such as RAND4.

Now focusing on the CCLE-trained models, we note that on MNIST, there is a

more significant variation in NCCLLs between models than on F-MNIST. For example,

this is shown in the larger differences in CCLL scores between the uniform random

and grid models such as GRID8,γ=0.1451 and GRID4,γ=0.8889. However, on F-MNIST,

we observe very comparable NCCLL scores across the board for all models, with

only GRID8,γ=0.8889 GRIDnbis=32 showing more significant lower NCCLL scores. This

indicates that on F-MNIST, our CCLE models generally show more comparable local

conditional modelling. It is worth highlighting that the uniform sampling methods do

not perform significantly better on test patch sizes of the same size as those they were

trained on. This could link to the difficulty in training models using uniform random

sampling as discussed in Section 4.2.1.

We observe that the NCCLLs of RAND8 models are similar to the comparable

models GRID4,γ=0.1024 on F-MNIST, which sample around four 4×4 patch samples

during training (i.e. the same number of pixels as sampling a single 8× 8 but non-

contiguously). Furthermore, on both datasets, we observe comparable NCCLL across
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Table 4.2: Test NCCLL and FIDinp scores - average test negative CCLLs and their

associated standard deviations over a collection of patch windows of different sizes as

well as the total average over all patch size windows of EiNet models on MNIST and

F-MNIST, alongside their associated FIDinp values. Lower is better.

Model −ℓCCLL,(p,q) (θθθMMM ;Dtest) −ℓCCLL (θθθMMM ;Dtest) FIDinp
(M) (4,4) (4,12) (8,8) (12,12)

M
N

IS
T

EM 7.029±0.472 7.118±0.375 7.153±0.346 7.216±0.228 7.129±0.0369 21.568
SGD 111...555222000±1.860 111...888333333±1.435 111...999777111±1.337 222...111999999±0.910 111...888888111±1.433 444...999666111

RAND4 1.584±1.916 1.917±1.483 2.070±1.377 2.311±0.932 1.970±1.493 9.132
RAND8 1.557±1.900 1.879±1.467 2.022±1.367 2.257±0.933 1.929±1.465 6.713
RAND16 1.565±1.921 1.876±1.473 2.015±1.368 2.237±0.934 1.922±1.489 5.095

BISnbis=2 1.539±1.879 1.857±1.451 1.997±1.352 2.230±0.920 1.906±1.445 6.522
BISnbis=8 1.531±1.869 1.847±1.445 1.990±1.345 2.220±0.917 1.897±1.442 5.740
BISnbis=32 1.529±1.868 1.843±1.442 1.984±1.342 2.212±0.917 1.892±1.440 5.652

GRID4,γ=0.0256 1.584±1.916 1.917±1.483 2.070±1.377 2.304±0.932 1.969±1.491 8.263
GRID4,γ=0.1024 1.584±1.923 1.914±1.483 2.064±1.379 2.302±0.940 1.966±1.480 9.256
GRID4,γ=0.6272 1.539±1.879 1.858±1.452 2.001±1.350 2.233±0.920 1.910±1.430 6.116
GRID8,γ=0.1451 1.547±1.887 1.868±1.458 2.012±1.357 2.244±0.927 1.920±1.147 6.860
GRID8,γ=0.8889 111...555222888±1.868 111...888333666±1.438 111...999777666±1.339 222...222000000±0.915 111...888888555±1.133 444...888333777

F-
M

N
IS

T

EM 7.568±0.485 7.650±0.381 7.680±0.349 7.732±0.245 7.658±0.380 13.420
SGD 333...999444999±2.662 444...333111888±2.164 444...444666222±2.035 444...777000000±1.532 444...333555777±2.154 333...444444222

RAND4 3.848±2.613 4.221±2.124 4.371±2.000 4.615±1.506 4.264±2.117 3.963
RAND8 3.822±2.621 4.189±2.131 4.333±2.010 4.571±1.513 4.229±2.124 3.054
RAND16 3.827±2.628 4.190±2.134 4.332±2.012 4.565±1.515 4.229±2.127 2.765

BISnbis=2 3.811±2.612 4.178±2.127 4.322±2.008 4.560±1.512 4.218±2.119 2.910
BISnbis=8 333...777999888±2.604 444...111666666±2.120 444...333000999±2.000 4.546±1.506 444...222000555±2.112 2.935
BISnbis=32 3.810±2.613 4.178±2.125 4.321±2.004 4.560±1.508 4.217±2.117 3.082

GRID4,γ=0.0256 3.825±2.608 4.198±2.120 4.352±1.997 4.594±1.504 4.242±2.113 4.013
GRID4,γ=0.1024 3.816±2.611 4.185±2.121 4.335±2.000 4.574±1.506 4.228±2.115 3.517
GRID4,γ=0.6272 3.806±2.606 4.172±2.119 4.317±1.999 4.556±1.505 4.212±2.111 2.826
GRID8,γ=0.1451 3.813±2.622 4.182±2.132 4.325±2.014 4.562±1.516 4.221±2.125 3.039
GRID8,γ=0.8889 3.802±2.613 4.167±2.125 444...333000999±2.007 444...555444333±1.511 444...222000555±2.118 222...555333444

bisection and grid models that, on average, all sample around half an image worth of

pixels, specifically GRID4,γ=0.6272 and GRID8,γ=0.8889. Moreover, we note negligible

differences between bisection NCCLLs, further adding to our comments in Section 4.2.1.

In particular, these grid and bisection models show the lowest NCCLLs over all CCLE

models. These observations indicate that non-contiguous patching does not seem to

aid in local conditional modelling performance significantly, and that generally, larger

patch sampling methods seem to be able to model both small and large local regions

better, echoing what we noted in our discussions in Section 4.2.1.

Finally, we note the large standard deviations of the computed NCCLLs, which

indicates great variability in every model’s NCCLL performance. This variability most

likely occurs between images and patches selected since some images and patches will

likely be more straightforward to model than others. For example, patches closer to the
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border of MNIST images tend to be formed mostly of black pixels. However, this could

also be down to our use of nsample = 3 for test NCCLLs calculations.

Visual Inpainting and FIDinp Comparisons We see, in Table 4.2, lower FIDinp scores

of CCLE models to the MLE baseline models on F-MNIST, indicating better inpainting

performance and aligning with the NCCLL scores discussed above. On MNIST, we

observe all models showing higher and, therefore, seemingly worse inpainting quality

through higher FIDinp scores than the SGD baseline. However, GRID8,γ=0.8889 per-

forms better than the baseline on MNIST, although not significantly. Moreover, despite

showing comparable NCCLL performance to GRID8,γ=0.6272 and the bisection models,

GRID8,γ=0.8889 shows a lower FIDinp on F-MNIST. This highlights that GRID8,γ=0.8889

shows better generative inpainting performance despite having comparable local mod-

elling performance.

Further looking at Figure 4.5, we observe that GRID4,γ=0.6272, GRID8,γ=0.1451,

GRID8,γ=0.8889 and BISnbis=32 show the highest quality inpainted images on both datasets

of all CCLE-trained models. Indeed they generally show comparable quality inpainted

images to the SGD baseline on MNIST, albeit the overall quality of all inpainting on

MNIST is relatively poor. On F-MNIST, these models show very good inpainting quality,

generally surpassing the quality of the SGD baseline model; this is shown by the trouser

and boot inpainted images where we generally observe a smoother transition of pixel

intensities and shape compared to the SGD baseline model. This aligns with the lower

NCCLL and FIDinp scores we observe in Table 4.2 on F-MNIST.

Moreover, we note that the uniform random sampling models, although, as discussed

in Section 4.2.1, provide poor overall densities, seem to perform much better locally

on F-MNIST. However, on MNIST, these models show poor inpainting in comparison.

Again we note that the models sampling larger patches during training show the greatest

inpainting performance on MNIST and F-MNIST, with the GRID8,γ=0.8889 model on

F-MNIST showing excellent inpainting for all images.

Looking at Figure 4.5, we observe that rather than producing noise as in Figure 4.1

and Figure 4.2 for full images, the EM models on both datasets can paint in some

portion of the sampled images, although at a much worse quality than any other model.

This indicates that the EM method has been able to learn enough information for some

level of generative capabilities, but not to the extent that it can generate full image

samples or even very good local samples.

The differences in NCCLL results and inpainting quality between the MNIST and
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Ref. EM SGD BIS.32 RAND4 RAND8 GR.4,0.1024 GR.4,0.6272 GR.8,0.1451 GR.8,0.8889

Figure 4.5: Inpainted images - inpainted patches (inside red boxes) of MNIST (top 6

rows) and F-MNIST (bottom 6 rows) images. Ref. denotes unaltered samples.
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F-MNIST datasets may be due to the different levels of information sparsity within

their images. As seen in Figure 4.1 and Figure 4.2, MNIST images contain more black

pixels with mean pixel values of around 33, compared to 128 in F-MNIST. These black

regions, containing little information, could affect the CCLE models during training.

This sparsity may reduce the local modelling benefits that conditional training offers.

Such sparsity could be particularly affecting uniform random sampling performance.

In conclusion, we find that CCLE training shows promise in allowing for im-
proved inpainting capabilities over MLE-trained models. However, we note that this

could depend on the dataset trained on and the sparsity of information contained
within data set images.

4.3 Limitations and Future Work

One of the main limitations in our work presented above is the need for statistical

significance testing of any improvements or differences observed during our experiments.

We could not explore this due to the time and computational constraints of training the

large models we investigated in this work. This is something that future work should

look into to more rigorously validate or disprove any claims or observations that we

have made in this project.

Another limitation of our work is highlighted by the large standard deviations of the

CCLLs scores shown in Table 4.2. This could be an artifact of the difficulty in local

modelling, which can be variable as discussed in Section 4.2.2. However, these standard

deviations likely can be reduced by sampling more patches per image for test CCLL

calculations - we were only able to sample three for computational efficiency. This

would allow for a more informed view of the variability in the learned local modelling

capabilities of networks and better allow for comparisons of models.

Additional areas for future work include performing a more fine-grained analysis on

the relation of patch sizes to generalisation performance, regularisation and inpainting

capabilities of CCLE models and between EM and SGD-trained models more gener-

ally. Moreover, related to patch sizes, future work could investigate the selection of

consecutive overlapping regions in helping to stabilise the training of CCLE models as

suggested in Section 4.2.1.

During our experiments, we observed that the inpainting capabilities of CCLE

models depend on the dataset they were trained on, which could specifically be because

of the density of information within the dataset images. Future work should explore this
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important connection further on datasets such as SVHN or CelebA, which alongside

also investigating different architectures, would provide insights into scenarios where

CCLE training could be successful or limited.



Chapter 5

Conclusion

Probabilistic inference is the primary draw of probabilistic machine learning, allowing

for precise reasoning when dealing with uncertainty. EiNets are an efficient and

scalable class of probabilistic models. With their ability to provide efficient and exact

probabilistic inference, EiNets are an attractive alternative to expressive yet intractable

deep generative models like GANs.

However, large EiNet models, necessary for modelling complex distributions of data

such as images, often face problems when trained via maximum likelihood estimation

(MLE), such as a susceptibility to overfitting. We address this by investigating con-

ditional composite likelihood estimation (CCLE) as an alternative method of training

EiNets. We propose three novel implementations of CCLE training: uniform random,

bisection, and grid sampling. Our experiments on MNIST and Fashion-MNIST show

CCLE as a promising alternative training method for density estimation and generation

with EiNets. However, we find that CCLE objectives show mixed results as a form

of regularisation, where we further find a trade-off between better generalisation with

larger patch sizes and more significant regularisation with smaller sizes.

Moreover, we observe that CCLE-trained models often show improved inpaint-

ing capabilities over MLE-trained models, especially when using larger patch sizes.

However, the success of inpainting seemingly depends on the information density of

a dataset. Our work highlights the capabilities, benefits, and drawbacks of CCLE

training for EiNets, providing insights more generally for probabilistic models that

allow tractable conditional inference with intractable likelihoods. Future work should:

confirm the findings in this work through statistical significance testing, explore the

relationship between patch size and regularisation and generalisation, and explore the

effect of information sparsity in training images for the success of CCLE training.
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